×

zbMATH — the first resource for mathematics

Periodic points of Hamiltonian surface diffeomorphisms. (English) Zbl 1034.37028
The main result is that every nontrivial diffeomorphism \(F\) of a closed oriented surface of genus at least one has periodic points of arbitrarily high periods. The same is true for \(S^2\) provided the diffeomorphism has at least three fixed points. Furthermore as a consequence the authors prove that there exist \(n>0\) and a finite set \(P \subset \text{Fix}(F)\) such that \(F^n\) is not isotopic to the identity relative to \(P\). And also, that there exist \(n>0\) and \(p>0\) such that \(F^n\) has \(k\) periodic points for every \(k\geq p\). A second result of the paper, which depends on a result of Thurston says that every orientation-preserving diffeomorphism of a closed orientable surface has a normal form up to isotopy. The main technical work is an analysis of the dynamics of an element \(f \in \mathcal P(S)\), the set of diffeomorphisms of the surface \(S\) that are isotopic to the identity relative to the set of periodic points of \(f\). From this study they construct examples and they prove that the identity is the only area-preserving element of \(\mathcal P(S)\) that fixies at least three points.

MSC:
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
PDF BibTeX XML Cite
Full Text: DOI EMIS EuDML arXiv
References:
[1] G Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc. \((2)\) 13 (1976) 486 · Zbl 0342.60049 · doi:10.1112/jlms/s2-13.3.486
[2] A Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications 400, Kluwer Academic Publishers Group (1997) · Zbl 0874.58005
[3] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988) · Zbl 0649.57008
[4] M Brown, J M Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984) 503 · Zbl 0547.57010 · doi:10.2307/2045329
[5] C C Conley, E Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V I: Arnol’d, Invent. Math. 73 (1983) 33 · Zbl 0516.58017 · doi:10.1007/BF01393824 · eudml:143034
[6] C J Earle, J Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc. 73 (1967) 557 · Zbl 0196.09402 · doi:10.1090/S0002-9904-1967-11746-4
[7] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284 · Zbl 0406.00016
[8] S D Fisher, J Franks, The fixed points of an analytic self-mapping, Proc. Amer. Math. Soc. 99 (1987) 76 · Zbl 0611.30009 · doi:10.2307/2046274
[9] J M Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. (1982) · Zbl 0497.58018
[10] J Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8* (1988) 99 · Zbl 0634.58023 · doi:10.1017/S0143385700009366
[11] J Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. \((2)\) 128 (1988) 139 · Zbl 0676.58037 · doi:10.2307/1971464
[12] J Franks, Geodesics on \(S^2\) and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992) 403 · Zbl 0766.53037 · doi:10.1007/BF02100612 · eudml:144001
[13] J Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math. 2 (1996) 1 · Zbl 0891.58033 · emis:journals/NYJM/j/1996/2-1.html · eudml:119495 · nyjm.albany.edu:8000
[14] J Franks, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996) 2637 · Zbl 0862.58006 · doi:10.1090/S0002-9947-96-01502-4
[15] J Franks, Rotation numbers for area preserving homeomorphisms of the open annulus, Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ (1991) 123
[16] J Franks, M Handel, Area preserving group actions on surfaces, Geom. Topol. 7 (2003) 757 · Zbl 1036.37010 · doi:10.2140/gt.2003.7.757 · emis:journals/UW/gt/GTVol7/paper21.abs.html · eudml:123487 · arxiv:math/0203159
[17] M E Hamstrom, The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965) 59 · Zbl 0127.13505
[18] M E Hamstrom, Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math. 10 (1966) 563 · Zbl 0151.33002
[19] M Handel, Zero entropy surface diffeomorphisms, preprint
[20] M Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235 · Zbl 0928.55001 · doi:10.1016/S0040-9383(98)00001-9
[21] M Handel, Commuting homeomorphisms of \(S^2\), Topology 31 (1992) 293 · Zbl 0755.57012 · doi:10.1016/0040-9383(92)90022-A
[22] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173 · Zbl 0584.57007 · doi:10.1016/0001-8708(85)90028-3
[23] A Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1980) 137 · Zbl 0445.58015 · doi:10.1007/BF02684777 · numdam:PMIHES_1980__51__137_0 · eudml:103967
[24] J N Mather, Invariant subsets for area preserving homeomorphisms of surfaces, Adv. in Math. Suppl. Stud. 7, Academic Press (1981) 531 · Zbl 0505.58027
[25] J N Mather, Topological proofs of some purely topological consequences of Carathéodory’s theory of prime ends, North-Holland (1982) 225 · Zbl 0506.57005
[26] J Milnor, Lectures on the \(h\)-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press (1965) · Zbl 0161.20302
[27] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 · Zbl 1036.53064 · doi:10.1007/s00222-002-0251-x · arxiv:math/0111050
[28] J Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A-B 283 (1976) · Zbl 0408.20028
[29] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. \((\)N.S.\()\) 19 (1988) 417 · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.