×

zbMATH — the first resource for mathematics

Efficient solution of fluid-structure vibration problems. (English) Zbl 1033.74046
Summary: This paper deals with numerical computation of elastoacoustic vibration modes. We consider a redundant description of the fluid by means of pressure and displacement potential variables. We analyze a finite element discretization leading to a well-posed symmetric banded eigenvalue problem. An iterative algorithm requiring to solve sparse linear systems with one degree of freedom per fluid node is obtained. We show that, for acoustic models, this method coincides with a consistent discretization of the standard potential formulation. Numerical experiments validate the proposed methodology for elastoacoustic vibrations.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bermúdez, A.; Durán, R.; Muschietti, M.A.; Rodríguez, R.; Solomin, J., Finite element vibration analysis of fluid-solid systems without spurious modes, SIAM J. numer. anal., 32, 1280-1295, (1995) · Zbl 0833.73050
[2] Bermúdez, A.; Rodríguez, R., Finite element computation of the vibration modes of a fluid-solid system, Comput. methods. appl. mech. and engrg., 119, 355-370, (1994) · Zbl 0851.73053
[3] A. Bermúdez, R. Rodríguez, Analysis of a finite element method for pressure/potential formulation of elastoacoustic spectral problems. Technical Report DIM 99-05, Universidad de Concepción, Concepción, 1999 (to appear in Math. Comp.)
[4] Chen, H.C.; Taylor, R.L., Vibration analysis of fluid-solid systems using a finite element displacements formulation, Internat. J. numer. methods engrg., 29, 683-698, (1990) · Zbl 0724.73173
[5] Conca, C.; Planchard, J.; Vanninathan, M., Fluids and periodic structures, (1992), Masson Paris · Zbl 0910.76002
[6] Everstine, G.C., A symmetric potential formulation for fluid-structure interaction, J. sound vib., 79, 157-160, (1981)
[7] Kiefling, L.; Feng, G.C., Fluid-structure finite element vibration analysis, Aiaa j., 14, 199-203, (1976) · Zbl 0325.76017
[8] Morand, H.J.-P.; Ohayon, R., Substructure variational analysis of the vibrations of coupled fluid-structure systems. finite element results, Internat. J. numer. methods engrg., 14, 741-755, (1979) · Zbl 0402.73052
[9] Morand, H.J.-P.; Ohayon, R., Fluid structure interaction, (1995), John Wiley & Sons · Zbl 0834.73002
[10] Rodríguez, R.; Solomin, J., The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems, Math. comp., 65, 1463-1475, (1996) · Zbl 0853.65111
[11] Zienkiewich, O.C.; Taylor, R.L., The finite element method, 2, (1989), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.