×

zbMATH — the first resource for mathematics

The construction of possibility measures from samples on \(\mathfrak T\)-semi-partitions. (English) Zbl 1031.94555

MSC:
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
68T30 Knowledge representation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boyen, L.; de Cooman, G.; Kerre, E.E., On the extension of P-consistent mappings, (), 88-98 · Zbl 0981.28501
[2] B. De Baets, Crowns and root systems, submitted.
[3] De Baets, B., Elementary inverse problems in [0,1]^n-valued possibility theory, (), 129-140 · Zbl 1126.94370
[4] De Baets, B., Model implicators and their characterization, (), A42-A49
[5] De Baets, B., Oplossen Van vaagrelationele vergelijkingen: een ordetheoretische benadering, ()
[6] De Baets, B., An order-theoretic approach to solving sup-%plane1D;4AF; equations, (), 67-87 · Zbl 0874.04005
[7] De Baets, B., Residual operators of implicators, (), 136-140
[8] De Baets, B.; de Cooman, G., Constructing possibility measures, (), 472-477
[9] De Baets, B.; Kerre, E., A primer on solving fuzzy relational equations on the unit interval, International journal of uncertainty, fuzziness and knowledge-based systems, 2, 205-225, (1994) · Zbl 1232.03039
[10] De Baets, B.; Kerre, E., A representation of solution sets of fuzzy relational equations, (), 287-294
[11] B. De Baets, R. Mesiar.
[12] De Baets, B.; Mesiar, R., Residual implicators of continuous t-norms, (), 27-31
[13] de Cooman, G., Possibility theory I: the measure and integral-theoretic groundwork, International journal of general systems, 25, 291-323, (1997) · Zbl 0955.28012
[14] de Cooman, G., Possibility theory II: conditional possibility, International journal of general systems, 25, 325-351, (1997) · Zbl 0955.28013
[15] de Cooman, G., Possibility theory III: possibilistic independence, International journal of general systems, 25, 353-371, (1997) · Zbl 0955.28014
[16] de Cooman, G.; Kerre, E.E., Possibility and necessity integrals, Fuzzy sets and systems, 77, 207-227, (1996) · Zbl 0872.28010
[17] de Cooman, G.; Kerre, E.E.; Vanmassenhove, F., Possibility theory: an integral theoretic approach, Fuzzy sets and systems, 46, 287-300, (1992) · Zbl 0772.28008
[18] Denneberg, D., Non-additive measure and integral, (1994), Kluwer Academic Publishers Aachen · Zbl 0826.28002
[19] Di Nola, A.; Sessa, S.; Pedrycz, W.; Sanchez, E., Fuzzy relation equations and their applications to knowledge engineering, (1989), Kluwer Academic Publishers Dordrecht · Zbl 0694.94025
[20] Dubois, D.; Prade, H., Théorie des possibilités, (1985), Masson Dordrecht
[21] Höhle, U., Fuzzy equalities and indistinguishability, (), 358-363
[22] Klawonn, F.; Kruse, R., From fuzzy sets to indistinguishability and back, (), A57-A59
[23] Schweizer, B.; Sklar, A., Associative functions and abstract semi-groups, Publ. math. debrecen, 10, 69-84, (1963) · Zbl 0119.14001
[24] Trillas, E.; Valverde, L., An inquiry into indistinguishability operators, (), 231-256 · Zbl 0564.03027
[25] Wang, Z.; Klir, G.J., Fuzzy measure theory, (1992), Plenum Press Dordrecht · Zbl 0812.28010
[26] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.