×

zbMATH — the first resource for mathematics

On the low-energy limit of the QED \(N\)-photon amplitudes. (English) Zbl 1031.81675
Summary: We derive an explicit formula for the low energy limits of the one-loop on-shell massive \(N\)-photon amplitudes, for arbitrary \(N\) and all helicity assignments, in scalar and spinor QED. The two-loop corrections to the same amplitudes are obtained for up to the ten point case. All photon amplitudes with an odd number of ‘+’ helicities are shown to vanish in this limit to all loop orders.

MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bern, Z.; Kosower, D.A.; Bern, Z.; Kosower, D.A., Phys. rev. lett., Nucl. phys. B, 379, 451, (1992)
[2] Bern, Z.; Dixon, L.J.; Kosower, D.A., Annu. rev. nucl. part. sci., 46, 109, (1996)
[3] Davydychev, A.I., Phys. lett. B, 263, 107, (1991)
[4] Bern, Z.; Dixon, L.J.; Kosower, D.A., Nucl. phys. B, 412, 751, (1994)
[5] Campbell, J.M.; Glover, E.W.N.; Miller, D.J., Nucl. phys. B, 498, 397, (1997)
[6] Pittau, R., Comput. phys. commun., 104, 23, (1997)
[7] Weinzierl, S., Phys. lett. B, 450, 234, (1999)
[8] Fleischer, J.; Jegerlehner, F.; Tarasov, O.V., Nucl. phys. B, 566, 423, (2000)
[9] Binoth, T.; Guillet, J.P.; Heinrich, G., Nucl. phys. B, 572, 361, (2000)
[10] Binoth, T.; Guillet, J.P.; Heinrich, G.; Schubert, C., Nucl. phys. B, 615, 385, (2001)
[11] Mahlon, G., Phys. rev. D, 49, 2197, (1994)
[12] Karplus, R.; Neuman, M., Phys. rev., 80, 380, (1950)
[13] Costantini, V.; De Tollis, D.; Pistoni, G., Nuovo cimento, 2A, 733, (1971)
[14] Passarino, G.; Veltman, M., Nucl. phys. B, 160, 151, (1979)
[15] Denner, A., Fortschr. phys., 41, 307, (1993)
[16] Dicus, D.A.; Kao, C.; Repko, W.W., Phys. rev. D, 57, 2443, (1998)
[17] Itzykson, C.; Zuber, J., Quantum field theory, (1985), McGraw-Hill
[18] Heisenberg, W.; Euler, H., Z. phys., 98, 714, (1936)
[19] Weisskopf, V., (), Kong. Dans. Vid. Selsk. Math. Fys. Medd. XIV No. 6 (1936), reprinted
[20] Dunne, G.V.; Schubert, C., Phys. lett. B, 526, 55, (2002)
[21] Dunne, G.V.; Schubert, C., JHEP 0208 053
[22] Duff, M.J.; Isham, C.J.; Duff, M.J.; Isham, C.J., Phys. lett. B, Nucl. phys. B, 162, 271, (1980)
[23] W.A. Bardeen, preprint FERMILAB-CONF-95-379-T
[24] Rosly, A.A.; Selivanov, K.G., Phys. lett. B, 399, 135, (1997)
[25] Cangemi, D.; Cangemi, D., Nucl. phys. B, Int. J. mod. phys. A, 12, 1215, (1997)
[26] Chalmers, G.; Siegel, W., Phys. rev. D, 54, 7628, (1996)
[27] Berends, F.A.; Kleiss, R.; De Causmaecker, P.; Gastmans, R.; Wu, T.T., Phys. lett. B, 103, 124, (1981)
[28] Kleiss, R.; Stirling, W.J., Nucl. phys. B, 262, 235, (1985)
[29] Xu, Z.; Zhang, D.-H.; Chang, L., Nucl. phys. B, 291, 392, (1987)
[30] Ritus, V.I., Zh. eksp. teor. fiz., Sov. phys. JETP, 42, 774, (1975), (in English)
[31] Ritus, V.I., Zh. eksp. teor. fiz., Sov. phys. JETP, 46, 423, (1977), (in English)
[32] Ritus, V.I., The Lagrangian function of an intense electromagnetic field, () · Zbl 1097.81675
[33] Dittrich, W.; Reuter, M., Effective Lagrangians in quantum electrodynamics, (1985), Springer
[34] Reuter, M.; Schmidt, M.G.; Schubert, C., Ann. phys. (N.Y.), 259, 313, (1997)
[35] Fliegner, D.; Reuter, M.; Schmidt, M.G.; Schubert, C., Teor. mat. fiz., Theor. math. phys., 113, 1442, (1997), (in English)
[36] Körs, B.; Schmidt, M.G., Eur. phys. J. C, 6, 175, (1999)
[37] Dixon, L., TASI Lectures, Boulder TASI 95 539
[38] Schwinger, J., Phys. rev., 82, 664, (1951)
[39] Bern, Z.; Dunbar, D.C., Nucl. phys. B, 379, 562, (1992)
[40] Strassler, M.J., Nucl. phys. B, 385, 145, (1992)
[41] M.J. Strassler, preprint SLAC-PUB-5978 (1992), unpublished
[42] Schmidt, M.G.; Schubert, C., Phys. lett. B, 318, 438, (1993)
[43] Schubert, C., Eur. phys. J. C, 5, 693, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.