×

zbMATH — the first resource for mathematics

Type-I strings on magnetised orbifolds and brane transmutation. (English) Zbl 1031.81579
Summary: In the presence of internal magnetic fields, a D9 brane can acquire a D5 (or anti-D5) R-R charge, and can therefore contribute to the corresponding tadpole. In the resulting vacua, supersymmetry is generically broken and tachyonic instabilities are present. However, suitable choices for the magnetic fields, corresponding to self-dual configurations in the internal space, can yield new chiral supersymmetric vacua with gauge groups of reduced rank, where the magnetic energy saturates, partly or fully, the negative tension of the \(O5_+\) planes. These models contain Green-Schwarz couplings to untwisted R-R forms not present in conventional orientifolds.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E., Phys. lett. B, 149, 351, (1984)
[2] C. Bachas, A way to break supersymmetry, hep-th/9503030, Magnetic Supersymmetry Breaking, hep-th/9509067. See also M. Bianchi, Y.S. Stanev, Nucl. Phys. B 523 (1998) 193, hep-th/9711069; R. Blumenhagen, L. Gorlich, B. Kors, D. Lust, Asymmetric orbifolds, noncommutative geometry and type I string vacua, hep-th/0003024, Noncommutative Compactifications of Type I Strings on Tori with Magnetic Background Flux, hep-th/0007024.
[3] Fradkin, E.S.; Tseytlin, A.A., Phys. lett. B, 163, 123, (1985)
[4] Abouelsaood, A.; Callan, C.G.; Nappi, C.R.; Yost, S.A., Nucl. phys. B, 280, 599, (1987)
[5] Ferrara, S.; Porrati, M.; Telegdi, V.L., Phys. rev. D, 46, 3529, (1992)
[6] N.K. Nielsen, P. Olesen, Nucl. Phys. B 144 (1978) 376; J. Ambjorn, N.K. Nielsen, P. Olesen, Nucl. Phys. B 152 (1979) 75; H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 156 (1979) 1.
[7] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T.R., Nucl. phys. B, 511, 611, (1998), hep-th/9708075
[8] A. Sagnotti, in: Cargese’87, Non-Perturbative Methods in Field Theory, G. Mack et al. (Eds.), Pergamon Press, 1988, p. 521; G. Pradisi, A. Sagnotti, Phys. Lett. B 216 (1989) 59; M. Bianchi, A. Sagnotti, Phys. Lett. B 247 (1990) 517; Nucl. Phys. B 361 (1991) 519; M. Bianchi, G. Pradisi, A. Sagnotti, Nucl. Phys. B 376 (1992) 365.
[9] Witten, E., Nucl. phys. B, 460, 541, (1996), hep-th/9511030
[10] M. Li, Nucl. Phys. B 460 (1996) 351, hep-th/9510161; M.R. Douglas, Branes within branes, hep-th/9512077; M.B. Green, J.A. Harvey, G. Moore, Class. Quant. Grav. 14 (1997) 47, hep-th/9605033; Y.E. Cheung, Z. Yin, Nucl. Phys. B 517 (1998) 69, hep-th/9710206; R. Minasian, G. Moore, JHEP 9711 (1997) 002, hep-th/9710230; E. Witten, JHEP 9812 (1998) 019, hep-th/9810188.
[11] C. Angelantonj, R. Blumenhagen, M.R. Gaberdiel, Asymmetric orientifolds, brane supersymmetry breaking and non-BPS branes, hep-th/0006033. · Zbl 0991.81087
[12] I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464 (1999) 38, hep-th/9908023. For recent reviews of supersymmetry breaking in type I vacua see: I. Antoniadis, Mass scales in string and M-theory, hep-th/9909212; I. Antoniadis, A. Sagnotti, Class. Quant. Grav. 17 (2000) 939, hep-th/9911205; A. Sagnotti, Nucl. Phys. Proc. Suppl. 88 (2000) 160, hep-th/0001077; E. Dudas, Theory and phenomenology of type I strings and M-theory, hep-ph/0006190.
[13] Angelantonj, C., Nucl. phys. B, 566, 126, (2000), hep-th/9908064
[14] Aldazabal, G.; Uranga, A.M., Jhep, 9910, 024, (1999), hep-th/9908072
[15] Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A., Nucl. phys. B, 572, 36, (2000), hep-th/9911081
[16] Bianchi, M.; Morales, J.F.; Pradisi, G., Nucl. phys. B, 573, 314, (2000), hep-th/9910228
[17] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017. For reviews see: J. Polchinski, S. Chaudhuri, C.V. Johnson, Notes on D-Branes, hep-th/9602052; C.P. Bachas, Lectures on D-branes, hep-th/9806199.
[18] M. Berkooz, M.R. Douglas, R.G. Leigh, Nucl. Phys. B 480 (1996) 265, hep-th/9606139; V. Balasubramanian, R.G. Leigh, Phys. Rev. D 55 (1997) 6415, hep-th/9611165.
[19] E.T. Whittaker, G.N. Watson, A Course on Modern Analysis, Cambridge Univ. Press, 1927. See also: E. Kiritsis, Introduction to superstring theory, hep-th/9709062.
[20] Cardy, J.L., Nucl. phys. B, 324, 581, (1989)
[21] M. Bianchi, A. Sagnotti, in [8]
[22] Gimon, E.G.; Polchinski, J., Phys. rev. D, 54, 1667, (1996), hep-th/9601038
[23] J. Polchinski, Y. Cai, Nucl. Phys. B 296 (1988) 91; G. Aldazabal, D. Badagnani, L.E. Ibanez, A.M. Uranga, JHEP 9906 (1999) 031, hep-th/9904071; J.F. Morales, C.A. Scrucca, M. Serone, Nucl. Phys. B 552 (1999) 291, hep-th/9812071q M. Bianchi, J.F. Morales, JHEP 0003 (2000) 030, hep-th/0002149.
[24] M. Bianchi, G. Pradisi, A. Sagnotti, in [8]; M. Bianchi, Nucl. Phys. B 528 (1998) 73, hep-th/9711201; E. Witten, JHEP 9802 (1998) 006, hep-th/9712028; Z. Kakushadze, G. Shiu, S.H. Tye, Phys. Rev. D 58 (1998) 086001, hep-th/9803141; C. Angelantonj, R. Blumenhagen, Phys. Lett. B 473 (2000) 86, hep-th/9911190.
[25] D. Fioravanti, G. Pradisi, A. Sagnotti, Phys. Lett. B 321 (1994) 349, hep-th/9311183; G. Pradisi, A. Sagnotti, Y.S. Stanev, Phys. Lett. B 354 (1995) 279, hep-th/9503207; G. Pradisi, A. Sagnotti, Y.S. Stanev, Phys. Lett. B 356 (1995) 230, hep-th/9506014; G. Pradisi, A. Sagnotti, Y.S. Stanev, Phys. Lett. B 381 (1996) 97, hep-th/9603097.
[26] Green, M.B.; Schwarz, J.H., Phys. lett. B, 149, 117, (1984)
[27] A. Sagnotti, Phys. Lett. B 294 (1992) 196, hep-th/9210127; S. Ferrara, R. Minasian, A. Sagnotti, Nucl. Phys. B 474 (1996) 323, hep-th/9604097; H. Nishino, E. Sezgin, Nucl. Phys. B 505 (1997) 497, hep-th/9703075; S. Ferrara, F. Riccioni, A. Sagnotti, Nucl. Phys. B 519 (1998) 115, hep-th/9711059; F. Riccioni, A. Sagnotti, Phys. Lett. B 436 (1998) 298, hep-th/9806129; F. Riccioni, Phys. Lett. B 474 (2000) 79, hep-th/9910246.
[28] L.E. Ibanez, R. Rabadan, A.M. Uranga, Nucl. Phys. B 542 (1999) 112, hep-th/9808139; C.A. Scrucca, M. Serone, Nucl. Phys. B 564 (2000) 555, hep-th/9907112, JHEP 9912 (1999) 024, hep-th/9912108.
[29] Dine, M.; Seiberg, N.; Witten, E., Nucl. phys. B, 289, 589, (1987)
[30] C. Bachas, C. Fabre, Nucl. Phys. B 476 (1996) 418, hep-th/9605028; I. Antoniadis, C. Bachas, E. Dudas, Nucl. Phys. B 560 (1999) 93, hep-th/9906039; P. Bain, M. Berg, JHEP 0004 (2000) 013, hep-th/0003185.
[31] Angelantonj, C.; Bianchi, M.; Pradisi, G.; Sagnotti, A.; Stanev, Y.S., Phys. lett. B, 385, 96, (1996), hep-th/9606169
[32] G. Aldazabal, L.E. Ibanez, F. Quevedo, JHEP 0001 (2000) 031, hep-th/9909172, A D-brane alternative to the MSSM, hep-ph/0001083; G. Aldazabal, L.E. Ibanez, F. Quevedo, A.M. Uranga, D-branes at singularities: A bottom-up approach to the string embedding of the standard model, hep-th/0005067.
[33] W. Fischler, L. Susskind, Phys. Lett. B 171 (1986) 383; Phys. Lett. B 173 (1986) 262.
[34] E. Dudas, J. Mourad, Brane solutions in strings with broken supersymmetry and dilaton tadpoles, hep-th/0004165. · Zbl 1050.81640
[35] Sugimoto, S., Prog. theor. phys., 102, 685, (1999), hep-th/9905159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.