×

zbMATH — the first resource for mathematics

Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. (English) Zbl 1031.68098
Summary: We investigate theoretically the conditions for the emergence of synchronous activity in large networks, consisting of two populations of extensively connected neurons, one excitatory and one inhibitory. The neurons are modeled with quadratic integrate-and-fire dynamics, which provide a very good approximation for the subthreshold behavior of a large class of neurons. In addition to their synaptic recurrent inputs, the neurons receive a tonic external input that varies from neuron to neuron. Because of its relative simplicity, this model can be studied analytically. We investigate the stability of the Asynchronous State (AS) of the network with given average firing rates of the two populations. First, we show that the AS can remain stable even if the synaptic couplings are strong. Then we investigate the conditions under which this state can be destabilized.
We show that this can happen in four generic ways. The first is a saddle-node bifurcation, which leads to another state with different average firing rates. This bifurcation, which occurs for strong enough recurrent excitation, does not correspond to the emergence of synchrony. In contrast, in the three other instability mechanisms, Hopf bifurcations, which correspond to the emergence of oscillatory synchronous activity, occur. We show that these mechanisms can be differentiated by the firing patterns they generate and their dependence on the mutual interactions of the inhibitory neurons and cross talk between the two populations. We also show that besides these codimension 1 bifurcations, the system can display several codimension 2 bifurcations: Takens-Bogdanov, Gavrielov-Guckenheimer, and double Hopf bifurcations.

MSC:
68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbott L. F., Phys. Rev. 48 pp 1483– (1993)
[2] DOI: 10.1023/A:1008816611284
[3] DOI: 10.1016/S0166-2236(97)01151-X
[4] DOI: 10.1162/089976600300015907
[5] DOI: 10.1023/A:1008925309027 · Zbl 1036.92008
[6] DOI: 10.1162/089976699300016179
[7] DOI: 10.1007/BF00160806 · Zbl 05474275
[8] DOI: 10.1016/0959-4388(95)80012-3
[9] Chow C. C., Physica 118 pp 343– (1998)
[10] DOI: 10.1023/A:1008889328787 · Zbl 0912.92005
[11] DOI: 10.1162/089976698300017511
[12] DOI: 10.1162/neco.1994.6.4.679
[13] DOI: 10.1162/neco.1996.8.5.979
[14] DOI: 10.1137/0146017 · Zbl 0594.58033
[15] Fuhrman G., J. Neurophysiol. 88 pp 761– (2002)
[16] DOI: 10.1162/089976600300015899
[17] DOI: 10.1103/PhysRevLett.71.312
[18] Ginzburg I., Phys. Rev. 50 pp 3171– (1994)
[19] Golomb D., J. Neurophysiol. 79 pp 1– (1998)
[20] DOI: 10.1073/pnas.96.23.13480
[21] DOI: 10.1162/089976600300015529
[22] Golomb D., Phys. Rev. 48 pp 4810– (1993)
[23] Golomb D., Physica 72 pp 259– (1994)
[24] DOI: 10.1126/science.287.5451.273
[25] DOI: 10.1103/PhysRevLett.86.4175
[26] DOI: 10.1209/0295-5075/23/5/011
[27] Hansel D., Concepts in Neuroscience 4 pp 192– (1993)
[28] DOI: 10.1162/neco.1995.7.2.307
[29] DOI: 10.1162/089976698300017845
[30] DOI: 10.1103/PhysRevLett.68.718
[31] DOI: 10.1007/BF00158335
[32] DOI: 10.1016/S0166-2236(96)10023-0
[33] Latham P. E., J. Neurophysiol. 83 pp 808– (2000)
[34] DOI: 10.1146/annurev.physiol.63.1.815
[35] DOI: 10.1162/089976600300015286
[36] Rall W., J. Neurophysiol. 30 pp 1138– (1967)
[37] DOI: 10.1209/0295-5075/10/5/013
[38] DOI: 10.1023/A:1012885314187 · Zbl 05967453
[39] Sik A., J. Neurosci. 15 pp 6651– (1995)
[40] DOI: 10.1111/j.1469-7793.1998.351bq.x
[41] DOI: 10.1023/A:1008839312043 · Zbl 0900.92039
[42] DOI: 10.1113/jphysiol.1996.sp021397
[43] DOI: 10.1088/0954-898X/4/3/002 · Zbl 0798.92009
[44] Tsodyks M. V., J. Neurosci. 17 pp 4382– (1997)
[45] van Vreeswijk C., Phys. Rev. 54 pp 5522– (1996)
[46] DOI: 10.1103/PhysRevLett.84.5110
[47] DOI: 10.1007/BF00961879
[48] DOI: 10.1162/08997660151134280 · Zbl 1004.92011
[49] DOI: 10.1126/science.274.5293.1724
[50] DOI: 10.1162/089976698300017214
[51] Wang X.-J., J. Neurosci. 19 pp 9587– (1999)
[52] Wang X.-J., J. Neurosci. 16 pp 6402– (1996)
[53] DOI: 10.1162/neco.1992.4.1.84
[54] DOI: 10.1023/A:1008841325921 · Zbl 0896.92010
[55] DOI: 10.1038/373612a0
[56] DOI: 10.1016/S0167-8760(00)00173-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.