×

Laws of the iterated logarithm for the range of random walks in two and three dimensions. (English) Zbl 1031.60031

Let \((S_n)\) be a random walk in \(Z^d\), i.e. the sum of i.i.d. centered random variables \(X_i\) taking values in \(Z^d\). Let \(R_n\) be the range of the random walk, i.e. \(R_n\) is the number of distinct sites visited by \(S_0, S_1, \dots ,S_n\). For \(d=3\), under an additional assumption on the moments of \(X_1\), the authors prove an almost sure invariance principle for \(R_n\). As a corollary, they obtain laws of the iterated logarithm. For \(d=2\), assuming that the two coordinates of \(X_1\) are independent and bounded, they prove a law of the iterated logarithm for the range \(R_n\).

MSC:

60G50 Sums of independent random variables; random walks
60F15 Strong limit theorems
60G17 Sample path properties
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] BASS, R. F. and KHOSHNEVISAN, D. (1992). Local times on curves and uniform invariance principles. Probab. Theory Related Fields 92 465-492. · Zbl 0767.60070 · doi:10.1007/BF01274264
[2] BASS, R. F. and KUMAGAI, T. (2000). Laws of the iterated logarithm for some sy mmetric diffusion processes. Osaka J. Math. 37 625-650. · Zbl 0972.60007
[3] BENNETT, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57 33-45. · Zbl 0104.11905 · doi:10.2307/2282438
[4] DONSKER, M. D. and VARADHAN, S. R. S. (1979). On the number of distinct sites visited by a random walk. Comm. Pure Appl. Math. 32 721-747. · Zbl 0418.60074 · doi:10.1002/cpa.3160320602
[5] DVORETZKY, A. and ERD OS, P. (1951). Some problems on random walk in space. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 353-367. Univ. California Press, Berkeley. · Zbl 0044.14001
[6] HAMANA, Y. (1995). On the multiple point range of three-dimensional random walks. Kobe J. Math. 12 95-122. · Zbl 0856.60073
[7] HAMANA, Y. (1997). The fluctuation result for the multiple point range of two-dimensional recurrent random walks. Ann. Probab. 25 598-639. · Zbl 0890.60066 · doi:10.1214/aop/1024404413
[8] HAMANA, Y. (1998). An almost sure invariance principle for the range of random walks. Stochastic Process. Appl. 78 131-143. · Zbl 0934.60044 · doi:10.1016/S0304-4149(98)00053-2
[9] HAMANA, Y. (2000). Personal communication.
[10] HAMANA, Y. and KESTEN, H. (2001). A large-deviation result for the range of random walk and for the Wiener sausage. Probab. Theory Related Fields 120 183-208. · Zbl 1015.60092 · doi:10.1007/s004400000120
[11] HAMANA, Y. and KESTEN, H. (2002). Large deviations for the range of an integer-valued random walk. Ann. Inst. H. Poincaré Probab. Statist. 38 17-58. · Zbl 1009.60084 · doi:10.1016/S0246-0203(01)01087-1
[12] JAIN, N. C. and PRUITT, W. E. (1970). The range of recurrent random walk in the plane. Z. Wahrsch. Verw. Gebiete 16 279-292. · Zbl 0194.49205 · doi:10.1007/BF00535133
[13] JAIN, N. C. and PRUITT, W. E. (1971). The range of transient random walk. J. Anal. Math. 24 369-393. · Zbl 0249.60038 · doi:10.1007/BF02790380
[14] JAIN, N. C. and PRUITT, W. E. (1972). The law of the iterated logarithm for the range of random walk. Ann. Math. Statist. 43 1692-1697. · Zbl 0247.60042 · doi:10.1214/aoms/1177692404
[15] JAIN, N. C. and PRUITT, W. E. (1972). The range of random walk. Proc. Sixth Berkeley Sy mp. Math. Statist. Probab. 3 31-50. Univ. California Press, Berkeley. · Zbl 0247.60042 · doi:10.1214/aoms/1177692404
[16] JAIN, N. C. and PRUITT, W. E. (1974). Further limit theorems for the range of random walk. J. Anal. Math. 27 94-117. · Zbl 0293.60063 · doi:10.1007/BF02788644
[17] KALLENBERG, O. (1997). Foundations of Modern Probability. Springer, New York. · Zbl 0892.60001
[18] LE GALL, J.-F. (1986). Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection. Comm. Math. Phy s. 104 471-507. · Zbl 0609.60078 · doi:10.1007/BF01210952
[19] LE GALL, J.-F. (1988). Fluctuation results for the Wiener sausage. Ann. Probab. 16 991-1018. · Zbl 0665.60080 · doi:10.1214/aop/1176991673
[20] LE GALL, J.-F. (1994). Exponential moments for the renormalized self-intersection local time of planar Brownian motion. Séminaire de Probabilités XXVIII. Lecture Notes in Math. 1583 172-180. Springer, Berlin. · Zbl 0810.60078
[21] LE GALL, J.-F. and ROSEN, J. (1991). The range of stable random walks. Ann. Probab. 19 650-705. · Zbl 0729.60066 · doi:10.1214/aop/1176990446
[22] SKOROHOD, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA. · Zbl 0146.37701
[23] SPITZER, F. (1976). Principles of Random Walk. Springer, Berlin. · Zbl 0359.60003
[24] STORRS, CONNECTICUT 06269 E-MAIL: bass@math.uconn.edu RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES Ky OTO UNIVERSITY Ky OTO 606-8502 JAPAN E-MAIL: kumagai@kurims.ky oto-u.ac.jp
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.