×

zbMATH — the first resource for mathematics

Twists and Wilson loops in the string theory of two-dimensional QCD. (English) Zbl 1030.81518
Summary: The string theory that describes two-dimensional QCD in an asymptotic \(1/N\) expansion is investigated further. A complete geometrical description of the QCD partition function on an arbitrary manifold is given in terms of maps from a two-dimensional orientable surface onto the target space. This includes correction terms that arise on surfaces with genus \(G\neq 1\), which are described geometrically by the insertion of extra ’twist’ points in the covering maps. In addition, the formalism is derived for calculating the vacuum expectation value of an arbitrary product of Wilson loops on an arbitrary two-dimensional manifold in terms of maps from an open string world sheet onto the target space.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Migdal, A., Zh. eksp. teor. fiz., 69, 810, (1975), (Sov. Phys. JETP. 42 413)
[2] Rusakov, B., Mod. phys. lett., A5, 693, (1990)
[3] Gross, D., Pupt 1356, lbl 33415, hepth/912149, (December 1992), preprint
[4] Gross, D.; Taylor, W., Pupt 1376, lbl 33458, ucb-pth-93/02, hepth/9301068, (January 1993), preprint
[5] Minahan, J., Uva-het-92-10, hepth/9301003, (January 1993), preprint
[6] Witten, W., Commun. math. phys., 141, 153, (1991)
[7] Samuel, S., J. math. phys., 21, 2695, (1980)
[8] C. Korthals-Altes, n Proc. 1974 Marselle Conf.;
[9] Kazakov, V., Phys. lett., B128, 316, (1983)
[10] Kostov, I., Phys. lett., B138, 191, (1984)
[11] Kostov, I., Nucl. phys., B265, 223, (1986)
[12] O’Brien, K.H.; Zuber, J.-B.; O’Brien, K.H.; Zuber, J.-B., Nucl. phys., Phys. lett., B144, 407, (1984)
[13] Gross, D.; Witten, E., Phys. rev., D21, 446, (1980)
[14] Kazakov, V.; Kostov, I., Nucl. phys., B176, 199, (1980)
[15] Makeenko, Y.; Migdal, A., Phys. lett., B88, 135, (1979)
[16] Kazakov, V., Nucl. phys., B179, 283, (2981)
[17] Bralic, N., Phys. rev., D22, 3090, (1980)
[18] ’t Hooft, G., Nucl. phys., B72, 461, (1974)
[19] Callan, C.; Coote, N.; Gross, D., Phys. rev., D13, 1649, (1976)
[20] Strominger, A., Phys. lett., B101, 271, (1981)
[21] Bars, I.; Hanson, A.; Bars, I.; Hanson, A., Phys. rev., Nucl. phys., B111, 413, (1976)
[22] Kazakov, V.; Migdal, A., Phys. lett., B103, 214, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.