×

A hybrid algorithm for the joint PDF equation of turbulent reactive flows. (English) Zbl 1030.76046

From the summary: We present a particle-finite volume hybrid algorithm for joint velocity-frequency-composition PDF method for turbulent reactive flows. This method is a combination of a finite volume scheme and a particle method. The finite volume scheme is used to solve the Reynolds averaged Navier-Stokes equations, and the particle method is used to solve the joint PDF transport equation. The motivation is to reduce the bias and the statistical error, and to have an algorithm which is more efficient than stand-alone particle-mesh methods. The properties of the new algorithm are demonstrated by results for a nonpremixed piloted-jet flame test case.

MSC:

76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
76F25 Turbulent transport, mixing
80A25 Combustion
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Anand, M.S.; Hsu, A.T.; Pope, S.B., Calculations of swirl combustors using joint velocity-scalar probability density function method, Aiaa j, 35, 1143-1150, (1997)
[2] Chang, G.-C., A Monte Carlo PDF/ finite-volume study of turbulent flames, (1996)
[3] Chen, J.Y.; Kollmann, W.; Dibble, R.W., Pdf modeling of turbulent nonpremixed methane jet flames, Combust. sci. technol, 64, 315-346, (1989)
[4] Colucci, P.J.; Jaberi, F.A.; Givi, P.; Pope, S.B., Filtered density function for large eddy simulation of turbulent reacting flows, Phys. fluids, 10, 499-515, (1998) · Zbl 1185.76747
[5] Correa, S.M.; Pope, S.B., Comparison of a Monte Carlo PDF finite-volume Mean flow model with bluff-body Raman data, Twenty-fourth symposium (int’l) on combustion, 279-285, (1992)
[6] Delarue, B.J.; Pope, S.B., Application of PDF methods to compressible turbulent flows, Phys. fluids, 9, 2704-2715, (1997) · Zbl 1185.76749
[7] Delarue, B.J.; Pope, S.B., Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods, Phys. fluids, 10, 487-498, (1998) · Zbl 1185.76833
[8] C. Dopazo, Recent developments in pdf methods, in Turbulent Reacting Flows, edited by P. A. Libby and F. A. WilliamsAcademic Press, London, 1994, chapter 7, pp. 375-474. · Zbl 0856.76068
[9] Dreeben, T.D.; Pope, S.B., PDF/Monte Carlo simulation of near-wall turbulent flows, J. fluid mech, 357, 141-166, (1998) · Zbl 0906.76073
[10] Haworth, D.C.; Pope, S.B., A generalized Langevin model for turbulent flows, Phys. fluids, 29, 387-405, (1986) · Zbl 0631.76051
[11] R. W. Hockney, and, J. W. Eastwood, Computer Simulations Using Particles Adam Hilger, 1988.
[12] Jayesh, and, S. B. Pope, Stochastic Model for Turbulent Frequency, Unpublished Technical Report FDA 95-05, Cornell University, 1995.
[13] Jenny, P., On the numerical solution of the compressible navier – stokes equations for reacting and non-reacting gas mixtures, (1997)
[14] Jenny, P.; Müller, B., Convergence acceleration for computing steady state compressible flow at low Mach numbers, Combust. flame, 28, 951-972, (1999) · Zbl 0961.76051
[15] Jenny, P.; Müller, B.; Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. comput. phys, 132, 91-107, (1996) · Zbl 0879.76059
[16] P. Jenny, M. Muradoglu, K. Liu, S. B. Pope, and, D. A. Caughey, Pdf simulations of a bluff-body stabilized flow, submitted for publication. · Zbl 0985.76073
[17] W. P. Jones, Turbulence modelling and numerical solution methods for variable density and combusting flows, in Turbulent Reacting Flows, Edited by P. A. Libby and F. A. WilliamsAcademic Press, London, 1994, p. 309-. · Zbl 0856.76028
[18] Kalos, M.H.; Whitlock, P.A., Monte Carlo methods, (1986)
[19] B. E. Launder, Phenomenological modelling: Present...and future? in Whither Turbulence? Turbulence at the Crossroads, Edited by J. L. Lumley, Lecture Notes in Physics Springer-Verlag, Berlin, 1990, pp. 439-485.
[20] Launder, B.E.; Spalding, D.B., Mathematical models of turbulence, (1972) · Zbl 0288.76027
[21] A. R. Masri, Technical Report, The University of Sydney, available at, http://www.mech.eng.usyd.eud.au/research/energy/.
[22] Masri, A.R.; Dibble, R.W.; Barlow, R.S., The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements, Prog. energy combust. sci, 22, 307-362, (1996)
[23] Masri, A.R.; Dibble, R.W.; Bilger, R.W., Turbulent non-premixed flames of methane near extinction: Mean structure from Raman measurements, Combust. flame, (1986)
[24] Masri, A.R.; Pope, S.B., PDF calculations of piloted turbulent non-premixed flames of methane, Combust. flame, 81, 13-29, (1990)
[25] Minier, J.P.; Pozorski, J., Analysis of a PDF model in a mixing layer case, Tenth symposium on turbulent shear flows, 26.25-2630, (1995)
[26] Muradoglu, M.; Pope, S.B.; Jenny, P.; Caughey, D.A., A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows, J. comput, phys, 154, 342-371, (1999) · Zbl 0953.76062
[27] Nooren, P.A.; Wouters, H.A.; Peeters, T.W.J.; Rockaerts, D.; Mass, U.; Schmidt, D., Monte Carlo pdf simulation of a turbulent natural-gas diffusion flame, Twenty-sixth symposium (int’l) on combustion, (1996)
[28] Jenny, P.; Müller, B.; Thomann, H., Correction of multidimensional conservative Euler solvers for gas mixtures, Proceedings of 6th international sysmposium on computational fluid dynamics, volume I, Lake Tahoe, 503-508, (1995)
[29] Pope, S.B., A Monte Carlo method for the PDF equations of turbulent reactive flow, Combust. sci. technol, 25, 159-174, (1981)
[30] Pope, S.B., PDF methods for turbulent reactive flows, Prog. energy combust. sci, 11, 119-192, (1985)
[31] Pope, S.B., Computations of turbulent combustion: progress and challenges, Twenty-third symposium (int’l) on combustion, 591-612, (1990)
[32] Pope, S.B., Lagrangian PDF methods for turbulent flows, Annu. rev. fluid. mech, 26, 23-63, (1994) · Zbl 0802.76033
[33] Pope, S.B., On the relationship between stochastic Lagrangian models of turbulence and second-moment closures, Phys. fluids, 6, 973-985, (1994) · Zbl 0827.76036
[34] S. B. Pope, PDF2DV: A Fortran code to solve the modelled joint PDF equations for two-dimensional recirculating flows, Unpublished, Cornell University, 1994.
[35] Pope, S.B., Particle method for turbulent flows: integration of stochastic model equations, J. comp. phys, 117, 332-349, (1995) · Zbl 0827.76063
[36] Pope, S.B., Computationally efficient implementation of combustion chemistry using, Combust. theory modelling, 1, 41-63, (1997) · Zbl 1046.80500
[37] Pope, S.B., The vanishing effect of molecular diffusivity on turbulent dispersion: implications for turbulent mixing and the scalar flux, J. fluid mech, 359, 299-312, (1998) · Zbl 0914.76040
[38] Pope, S.B., Turbulent flows, (2000)
[39] Pope, S.B.; Chen, Y.L., The velocity-dissipation probability density function model for turbulent flows, Phys. fluids A, 2, 1437-1449, (1990) · Zbl 0709.76060
[40] Roe, P.L., ()
[41] Saxena, V.; Pope, S.B., PDF calculations of major and minor species in a turbulent piloted jet flame, Twenty-seventh symposium (int’l.) on combustion, 1081-1086, (1998)
[42] Sesterhenn, J.; Müller, B.; Thomann, H., A simple characteristic flux evaluation for subsonic flow, 2nd ECCOMAS CDF conference, 57, (1994)
[43] Subramaniam, S., PDF models for mixing in turbulent reactive flows, (1997)
[44] van Leer, B., Towards the ultimate conservative difference scheme. v. a second order sequel to Godunov’s method, J. comput. phys, 32, 101, (1979) · Zbl 1364.65223
[45] Van Slooten, P.R.; Jayesh; Pope, S.B., Advances in PDF modeling for inhomogeneous turbulent flows, Phys. fluids, 10, 246-265, (1998) · Zbl 1185.76686
[46] Van Slooten, P.R.; Pope, S.B., PDF modeling of inhomogeneous turbulence with exact representation of rapid distortions, Phys. fluids, 9, 1085-1105, (1997) · Zbl 1185.76786
[47] P. R. Van Slooten, and, S. B. Pope, Application of PDF modeling to swirling and non-swirling turbulent jets, Flow, Turbulence and Combustion, 62, 295, - 333, 1999. · Zbl 0959.76034
[48] Wilcox, D.C., Turbulence modeling for CFD, (1993)
[49] Xu, J.; Pope, S.B., Assessment of numerical accuracy of pdf/Monte Carlo methods for turbulent reactive flows, J. comp. phys, 152, 192-230, (1999) · Zbl 0945.76069
[50] Xu, J.; Pope, S.B., Pdf calculations of turbulent nonpremixed flames with local extinction, Combust. flame, 123, 281-307, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.