×

zbMATH — the first resource for mathematics

Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. (English) Zbl 1030.76035
From the summary: We present a two-phase two-dimensional model that combines the volume-of-fluid (VOF) method with implicit staggered finite volume discretization of Navier-Stokes equations. Staggered finite volumes are developed on the basis of nonconforming Crouzeix-Raviart finite elements, where all components of the velocity lie in the middle of element edges, and the pressure degrees of freedom are found in the centers of mass of the elements. Staggered finite volumes extend marker-and-cell regular staggered grids to unstructured mesh. A linear saddle point problem, resulting from either the discretization or the Newton method, is solved for all unknown pressures and velocities. Interface is represented with spline interpolants which follow the VOF distribution. Using the proposed numerical techniques, we analyze single bubble rise.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
Software:
KRAKEN; SLIC; BiCGstab; UG
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ashgriz, N.; Poo, J.Y., A computational method for determining curvatures, J. comput. phys., 84, 483, (1989) · Zbl 0682.65006
[2] I. Aleinov, and, E. G. Puckett, Computing surface tension with high order kernels, in, Proc. 6th International Symposium on Computational Dynamics, edited by, K. Oshima, Lake Tahoe, CA, September 4-8, 1995.
[3] Ashgriz, N.; Poo, J.Y., FLAIR: flux line-segment model for advection and interface reconstruction, J. comput. phys., 93, 449, (1991) · Zbl 0739.76012
[4] Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the solution of linear systems: building blocks for iterative methods, SIAM, (1994)
[5] Bastian, P.; Birken, K.; Johannsen, K.; Lang, S.; Neuss, N.; Rentz-Reichert, H.; Wieners, C., UG—A flexible software toolbox for solving partial differential equations, Computing and visualization in science, 1, 27, (1997) · Zbl 0970.65129
[6] Bell, J.B.; Colella, P.; Glaz, H.M., A second-order projection method of the incompressible navier – stokes equation, J. comput. phys., 85, 257, (1989) · Zbl 0681.76030
[7] Bramble, J.H.; Pasciak, J.E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. comput., 50, 1, (1988) · Zbl 0643.65017
[8] Bramble, J.H., Multigrid methods, (1993) · Zbl 0786.65094
[9] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, Springer series in comp. math., 15, (1991) · Zbl 0788.73002
[10] Bhaga, D.; Weber, M.E., Bubbles in viscous liquids: shapes, wakes, and velocities, J. fluid mech., 105, 61, (1992)
[11] Barth, T.J., VKI/NASA/AGARD special course on unstructured grid methods for advection dominated flows, AGARD publication R-787, Aspects of unstructured grids and finite-volume solvers for Euler and navier – stokes equations, (1995)
[12] Barth, T.J.; Sethian, J.A., Numerical schemes for the hamilton – jacobi and level set equations on triangulate domains, J. comput. phys., 145, 1, (1998) · Zbl 0911.65091
[13] Brackbill, J.U.; Kothe, D.B.; Zemach, C., A continuum method for modeling surface tension, J. comput. phys., 100, 335, (1992) · Zbl 0775.76110
[14] Clift, R.; Grace, J.R.; Weber, M.E., Bubbles, drops, and particles, (1978), Academic Press San Diego
[15] Chopp, D.L., Computing minimal surfaces via level set curvature flow, J. comput. phys., 106, 77, (1993) · Zbl 0786.65015
[16] Collins, R., A simple model of the plane gas bubble in a finite liquid, J. fluid mech., 22, 763, (1965) · Zbl 0131.23601
[17] Coward, A.V.; Renardy, Y.Y.; Renardy, M.; Richards, J.R., Temporal evolution of periodic disturbances in two-layer Couette flow, J. comput. phys., 132, 346, (1997) · Zbl 0880.76055
[18] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations, Revue francaise d‘automatique, informatique et recherche opérationnele, R-3, 33, (1973) · Zbl 0302.65087
[19] Daly, B.J., A technique for including surface tension effects in hydrodynamic calculations, J. comput. phys., 4, 97, (1969) · Zbl 0197.25301
[20] R. DeBar, Fundamentals of the Kraken Code, Technical Report UCIR-760, LLNL, 1974.
[21] Fyfe, D.E.; Oran, E.S.; Fritts, M.J., Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, J. comput. phys., 76, 394, (1988) · Zbl 0639.76043
[22] Gao, D.M., A three-dimensional hybrid finite element – volume tracking model for mould filing in casting processes, Int. J. numer. methods fluids, 29, 877, (1999) · Zbl 0953.76046
[23] Galaktionov, O.S.; Anderson, P.D.; Peters, G.W.M.; Van de Vosse, F.N., An adaptive front tracking technique for three-dimensional transient flows, Int. J. numer. methods fluids, 32, 201, (2000) · Zbl 0966.76068
[24] Greaves, D.M.; Borthwick, A.G.L., On the use of adaptive hierarchical meshes for numerical simulation of separated flows, Int. J. numer. methods fluids, 26, 303, (1998) · Zbl 0910.76056
[25] Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J. sci. stat. comput., 9, 61, (1988) · Zbl 0636.65132
[26] D. Gueyffier, J. Lie, R. Scardovelli, and, S. Zaleski, Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, unpublished, 1998. · Zbl 0954.76063
[27] Hackbusch, W., Multi-grid methods and applications, (1985), Springer-Verlag New York · Zbl 0585.65030
[28] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[29] Hirt, C.W.; Nicholls, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[30] Hnat, J.G.; Buckmaster, J.D., Spherical cap bubbles and skirt formation, Phys. fluids, 19, 182, (1976) · Zbl 0319.76072
[31] Hyman, J.M., Numerical methods for tracking interfaces, Physica D, 12, 396, (1984) · Zbl 0604.65092
[32] Jeong, J.H.; Yang, D.Y., Finite element analysis of transient fluid flow with free surface using VOF (VOLUME-OF-FLUID) method and adaptive grid, Int. J. numer. methods fluids, 26, 1127, (1998) · Zbl 0927.76050
[33] D. B. Kothe, Perspective on Eulerian finite volume methods for incompressible interfacial flows, lecture notes presented at Free Surface Flow Workshop, International Centre for Mechanical Sciences, Udine, ItalySeptember 1-5, 1997. [In Free Surface Flows, edited by H. C. Kuhlmann and H.-J. RathSpringer-Verlag, New York, p. 267].
[34] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S., Modeling merging and fragmentation in multiphase flows with SURFER, J. comput. phys., 113, 134, (1994) · Zbl 0809.76064
[35] Les, Piegl, and, Wayane, Tiller, The NURBS Book, Springer-Verlag, New York, 1997.
[36] Leveque, R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627, (1996) · Zbl 0852.76057
[37] Li, J., Calcul d’interface affine par morceaux, C. R. acad. sci. Paris, 320, 391, (1995) · Zbl 0826.76065
[38] Lock, N.; Jaeger, M.; Medale, M.; Occelli, R., Local mesh adaptation technique for front tracking problems, Int. J. numer. methods fluids, 28, 719, (1998) · Zbl 0932.76034
[39] Ludgren, T.S.; Mansour, Vortex ring bubbles, J. fluid mech., 224, 177, (1991) · Zbl 0717.76119
[40] Mashayek, F.; Ashgriz, N., A hybrid finite-element-volume-of-fluid method for simulating free surface flows and interfaces, Int. J. numer. methods fluids, 20, 1363, (1995) · Zbl 0841.76040
[41] S. J. Mosso, B. K. Swartz, D. B. Kothe, and, S. P. Clancy, Recent enhancements of volume tracking algorithm for irregular grids, Los Alamos National Laboratory, Los Alamos, NM, LA_UR_96_277, 1996, presented at the Parallel CFD Conference, Capri, Italy, March 20-23, 1996.
[42] S. J. Mosso, B. K. Swartz, D. B. Kothe, and, R. C. Ferrell, A Parallel, Volume-Tracking Algorithm for Unstructured Meshes, Los Alamos National Laboratory, Los Alamos, NM, LA_UR_96_2420, 1996.
[43] W. F. Noh, and, P. R. Woodward, SLIC (simple line interface method), in, Lecture Notes in Phys. 59, edited by, A. I. van de Vooren and P. J. Zandbergen, Springer-Verlag, Berlin/New York, 1976, p, 330. · Zbl 0382.76084
[44] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 130, 269, (1997)
[45] S. Popinet, and, S. Zaleski, A front-tracking algorithm for the accurate representation of surface tension, submitted for publication. · Zbl 0940.76047
[46] Press, W.H.; Teukolsky, S.A.; Wetterling, W.T.; Flannnery, B.P., Numerical recipes in C, (1992), Cambridge Univ. Press Cambridge
[47] Puckett, E.G.; Almgren, A.S.; Bell, J.B.; Marcus, D.L.; Rider, W.J., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. comput. phys., 79, 12, (1988)
[48] Rannacher, R.; urek, S., Simple nonconforming quadrilateral Stokes element, Numer. methods partial diff. equations, 8, 97, (1992) · Zbl 0742.76051
[49] Rappoport, A.; Sheffer, A.; Bercovier, M., Volume preserving free form solids, IEEE trans. visualiz. comput. graphics, 2, 19, (1996)
[50] Rentz-Reichert, H., Robuste mehrgitterverfahren zur Lösung der inkompressiblen navier – stokes gleichung: ein vergleich, (1996), Stuttgart University
[51] Kim, S.-O.; No, H.C., Second order model for free surface convection and interface reconstruction, Int. J. numer. methods fluids, 26, 79, (1998) · Zbl 0910.76061
[52] J. E. Jr. Pilliod, and, E. G. Puckett, Second Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces, Technical Report No. LBNL-40744, Lawrence Berkley National Laboratory. · Zbl 1126.76347
[53] Price, G.R.; Reader, G.T.; Rowe, R.D.; Bugg, J.D., A piecewise parabolic interface calculation for volume tracking, Proceedings of the sixth annual conference of the computational fluid/dynamics society of Canada, (1998)
[54] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 141, 112, (1998) · Zbl 0933.76069
[55] Ryskin, G.; Leal, L.G., Numerical solution of free-boundary problems in fluid mechanics, part 2, buoyancy-driven motion of a gas bubble through a quiescent liquid, J. fluid mech., 148, 19, (1984) · Zbl 0548.76032
[56] Sato, T.; Richardson, S.M., Numerical simulation method for viscoelastic flow with free surfaces-fringe element generation method, Int. J. numer. methods fluids, 26, 555, (1994) · Zbl 0815.76046
[57] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. rev. fluid mech, 31, 567, (1999)
[58] Sleijpen, G.L.; van der Vorst, H.A.; Fokkema, D.R., Bicgstab(l) and other hybrid BI-CG methods, Numer. algorithms, 7, 75, (1994) · Zbl 0810.65027
[59] Schneider, G.E.; Raw, M.J., Control volume finite element method for heat transfer and fluid flow using collocated variables, Numer. heat transfer, 11, 363, (1987) · Zbl 0631.76107
[60] Rudman, M., Volume tracking methods for interfacial flow calculations, Int. J. numer. methods fluids, 24, 671, (1997) · Zbl 0889.76069
[61] Rudman, M., Volume tracking methods for incompressible multifluid flows with large density variations, Int. J. numer. methods fluids, 28, 357-378, (1998) · Zbl 0915.76060
[62] Sussmann, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[63] Sussmann, M.; Smereka, P., Axisymmetric free boundary problems, J. fluid mech., 341, 269, (1997) · Zbl 0892.76090
[64] Sussmann, M.; Almgren, A.S.; Bell, J.B.; Collela, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, J. comput. phys., 148, 81, (1994)
[65] Swartz, B., The second order sharpening of blurred smooth borders, Math. computat., 52, 675, (1989) · Zbl 0667.65004
[66] Unverdi, S.H.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[67] Vanka, S.P., Block-implicit multigrid solution of navier – stokes equations in primitive variables, J. comput. phys., 65, 138, (1986) · Zbl 0606.76035
[68] Wesseling, P., An introduction to multi-grid methods, (1992)
[69] M. W. Williams, D. B. Kothe, and, E. G. Puckett, Convergence and accuracy of kernel-based continuum surface tension models, LANL Report LA-UR-98-2268, invited paper of the Chia-Shuh Yih Memorial Symposium, in, Proceedings of the Thirteenth U.S. National Congress of Applied Mechanics, Gainesville, FL 1998.
[70] Wittum, G., Multi-grid methods for Stokes and navier – stokes equations, transforming smoothers: algorithms and numerical results, Numer. math., 54, 543, (1989) · Zbl 0645.76031
[71] D. L. Youngs, Time-dependent multi-material flow with large fluid distortion, in, Numerical Methods for Fluid Dynamics, edited by, K. W. Morton and M. L. Norman, 1986.
[72] D. L. Youngs, An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code, Technical Report 44/92/35, AWRE, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.