×

zbMATH — the first resource for mathematics

Designer gene networks: Towards fundamental cellular control. (English) Zbl 1029.92011
Summary: The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values.
Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks.

MSC:
92C37 Cell biology
94C99 Circuits, networks
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Glass, J. Theor. Biol. 39 pp 103– (1973)
[2] Savageau, Nature (London) 252 pp 546– (1974)
[3] Kauffman, J. Theor. Biol. 44 pp 167– (1974)
[4] Glass, J. Theor. Biol. 54 pp 85– (1975)
[5] Glass, J. Chem. Phys. 63 pp 1325– (1975)
[6] M. Savageau,Biochemical System Analysis(Addison-Wesley, Reading, MA, 1976). · Zbl 0398.92013
[7] B. C. Goodwin,Analytical Physiology of Cells and Developing Organisms(Academic, London, 1976).
[8] Tyson, Prog. Theor. Biol. 5 pp 1– (1978) · doi:10.1016/B978-0-12-543105-7.50008-7
[9] Ackers, Proc. Natl. Acad. Sci. U.S.A. 79 pp 1129– (1982)
[10] Palsson, J. Theor. Biol. 113 pp 279– (1985)
[11] Moran, Biophys. Chem. 20 pp 149– (1984)
[12] Reinitz, J. Theor. Biol. 145 pp 295– (1990)
[13] Novak, Proc. Natl. Acad. Sci. U.S.A. 94 pp 9147– (1997)
[14] Novak, J. Theor. Biol. 173 pp 283– (1995)
[15] Hammond, J. Theor. Biol. 163 pp 199– (1993)
[16] Keller, J. Theor. Biol. 172 pp 169– (1995)
[17] McAdams, Annu. Rev. Biophys. Biomol. Struct. 27 pp 199– (1998)
[18] Arkin, Genetics 149 pp 1633– (1998)
[19] Smolen, Am. J. Physiol. 43 pp C531– (1998)
[20] Wolf, J. Theor. Biol. 195 pp 167– (1998)
[21] Elowitz, Nature (London) 403 pp 335– (2000)
[22] Gardner, Nature (London) 403 pp 339– (2000)
[23] Becksei, Nature (London) 405 pp 590– (2000)
[24] Endy, Proc. Natl. Acad. Sci. U.S.A. 97 pp 5375– (2000)
[25] Sveiczer, Proc. Natl. Acad. Sci. U.S.A. 97 pp 7865– (2000)
[26] McAdams, Science 269 pp 650– (1995)
[27] McAdams, Proc. Natl. Acad. Sci. U.S.A. 94 pp 814– (1997)
[28] Hartwell, Nature (London) 402 pp C47– (1999)
[29] Lauffenburger, Proc. Natl. Acad. Sci. U.S.A. 97 pp 5031– (2000)
[30] R. Weiss and T. F. Knight, ”Engineered communications for microbial robotics,”DNA6: 6th International Meeting on DNA Based Computers(Leiden, The Netherlands, 2000). · Zbl 0984.68645
[31] Monod, J. Mol. Biol. 12 pp 88– (1965)
[32] Novick, Proc. Natl. Acad. Sci. U.S.A. 43 pp 553– (1957)
[33] Chen, Genetics 130 pp 15– (1993)
[34] Bray, Nature (London) 376 pp 307– (1995)
[35] Barkai, Nature (London) 403 pp 267– (2000)
[36] B. Lewin,Genes VI(Oxford University Press, Oxford, 1997).
[37] A more general treatment would incorporate all possible DNA-repressor binding configurations. However, the additional reactions have binding affinities characterized by equilibrium constants that are significantly smaller than for those considered, and their inclusion will not alter the general conclusions derived in this work.
[38] Shea, J. Mol. Biol. 181 pp 211– (1985)
[39] Wong, Biotechnol. Prog. 13 pp 132– (1997)
[40] McClure, Annu. Rev. Biochem. 54 pp 171– (1985)
[41] von Hippel, Science 281 pp 660– (1998)
[42] Jacob, J. Mol. Biol. 3 pp 318– (1961)
[43] Dickson, Science 187 pp 27– (1975)
[44] Savageau, Nature (London) 252 pp 546– (1974)
[45] Monod, Cold Spring Harbor Symp. Quant. Biol. 26 pp 389– (1961) · doi:10.1101/SQB.1961.026.01.048
[46] Ptaschne, Cell 19 pp 1– (1980)
[47] Meyer, J. Mol. Biol. 139 pp 163– (1980)
[48] Johnson, Nature (London) 294 pp 217– (1981)
[49] Johnson, Methods Enzymol. 65 pp 839– (1980)
[50] Ohlendorf, Annu. Rev. Biophys. Bioeng. 12 pp 259– (1983)
[51] J. Hasty, D. McMillen, F. Isaacs, and J. J. Collins (in preparation).
[52] See other Focus Articles in this issue of Chaos.
[53] Sancho, Phys. Rev. A 26 pp 1589– (1982)
[54] Samoilov, Chaos 11 pp 108– (2001)
[55] W. Horsthemke and R. Lefever,Noise-Induced Transitions(Springer-Verlag, Berlin, 1984). · Zbl 0529.60085
[56] Hasty, Proc. Natl. Acad. Sci. U.S.A. 97 pp 2075– (2000)
[57] N. G. Van Kampen,Stochastic Processes in Physics and Chemistry(North-Holland, Amsterdam, 1992). · Zbl 0511.60038
[58] Rozanov, J. Bacteriol. 180 pp 6306– (1998)
[59] M. Marek and I. Schrieber,Chaotic Behavior of Deterministic Dissipative Systems(Cambridge University Press, Cambridge, 1991).
[60] G. H. Hardy and E. M. Wright, inAn Introduction to the Theory of Numbers(Clarendon, Oxford, 1979).
[61] M. Ptashne,A Genetic Switch: Phage \(\lambda\) and Higher Organisms(Cell, Cambridge, MA, 1992).
[62] Villaverde, Appl. Env. Microbiol. 59 pp 3485– (1993)
[63] Lowman, Genetics 96 pp 133– (1990)
[64] Szafranski, Proc. Natl. Acad. Sci. U.S.A. 94 pp 1059– (1997)
[65] Harding, Nature Biotech. 16 pp 553– (1998)
[66] Gillespie, J. Phys. Chem. 81 pp 2340– (1977)
[67] Bialek
[68] Harada, Biophys. J. 76 pp 709– (1999)
[69] Savageau, BioSystems 47 pp 9– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.