×

zbMATH — the first resource for mathematics

Conservative discretization of contact/impact problems for nearly rigid bodies. (English) Zbl 1029.74044
Summary: We propose a discretization scheme for contact/impact problems related to modeling of gears. The problem is first discretized in time, and then a variational formulation for the resulting one-step problem is developed. A finite element discretization completes the discretization process. The scheme is a reinterpretation of general Simo-Laursen-Chavla algorithm in the context of rigid body motion superimposed with small elastic deformation; it conserves precisely the linear momentum and total energy, and approximately the angular momentum. The discretization method is illustrated with two numerical examples: standard one-dimensional impact problem for an elastic rod, and a two-dimensional model problem for an elastic wheel bouncing witin a constraining box.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
74M20 Impact in solid mechanics
Software:
2Dhp90; HP90
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K.T. Andrews, M.Shillor, S.Wright, Dynamic evolution of an elastic beam in frictional contact with an obstacle, in: M. Raous et al. (Eds.), Contact Mechanics, Plenum, New York, 1995 · Zbl 0860.73028
[2] Armero, F.; Petocz, E., A new class of conserving algorithms for dynamic contact problems, Comput. methods appl. mech. engrg., 158, 269-300, (1998) · Zbl 0954.74055
[3] Blankenship, G.W.; Kahraman, A., Steady state forced responce of a mechanical oscillator with combined parametric excitation and clearance type non-linearity, J. sound vibr., 185, 743-765, (1995) · Zbl 0982.70515
[4] C. Bohatier. A velocity formulation for the contact problems, In: M. Raous et al. (Eds.), Contact Mechanics, Plenum, New York, 1995 · Zbl 0901.73070
[5] Buczkowski, R.; Kleiber, M., Elasto-plastic interface model for 3D-frictional orthotropic contact problems, Int. J. numer. methods engrg., 40, 599-619, (1997) · Zbl 0888.73055
[6] Crisfield, M.; Shi, J., A co-rotational element/time integration strategy for non-linear dynamics, Int. J. numer. methods engrg., 37, 1897-1913, (1994) · Zbl 0804.70002
[7] Demkowicz, L.; Gerdes, K.; Schwab, C.; Bajer, A.; Walsh, T., HP90: A general and flexible Fortran 90 hp-FE code, Comput. visual sci., 1, 145-163, (1998) · Zbl 0912.68014
[8] L. Demkowicz, T. Walsh, K.Gerdes, A. Bajer, 2D hp-adaptive finite element package. Fortran 90 implementation (2Dhp90), TICAM Report 98-14, The University of Texas at Austin, Austin, TX 78712, 1998 · Zbl 0912.68014
[9] Goldfarb, D.; Idnani, A., A numerically stable dual method for solving strictly convex quadratic programs, Math. prog., 27, 1-33, (1983) · Zbl 0537.90081
[10] He, Q.C.; Telega, J.J.; Curnier, A., Unilateral contact of two solids subject to large deformations: formulations and existence results, Proc. R. soc. lon. A, 452, 2691-2717, (1996) · Zbl 0871.73062
[11] Heegaard, J.H.; Curnier, A., An augmented Lagrangian method for discrete large-slip contact problems, Int. J. numer. methods engrg., 36, 569-593, (1993) · Zbl 0769.73078
[12] Hughes, T.J.R.; Taylor, R.L.; Sackman, J.L.; Curnier, A.; Kanoknukulchai, W., A finite element method for a class of contact-impact problems, Comput. methods appl. mech. engrg., 8, 249-276, (1976) · Zbl 0367.73075
[13] J. Jarušek, Dynamical contact problems for viscoelastic bodies, in: M. Raous et al. (Eds.), Contact Mechanics, Plenum, Press, 1995
[14] Johnson, K.L., Contact mechanics, (1985), Cambridge University Press Cambridge · Zbl 0599.73108
[15] Kahraman, A., Effect of axial vibration on the dynamics of a helical gear pair, J. vibr. acoustics, 115, 33-39, (1993)
[16] Kahraman, A., Load shearing characteristic of planetary transmissions, Mech. Mach. theory, 29, 1151-1165, (1994)
[17] Kahraman, A., Planetary gear train dynamics, J. mech. design trans. ASME, 116, 713-720, (1994)
[18] Kahraman, A.; Blankenship, G.W., Interactions between commensurate parametric and forcing excitations in a system with clearance, J. sound vibr., 194, 317-336, (1996)
[19] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, PA, 1985 · Zbl 0685.73002
[20] A. Lahal, G. Bayada, M. Chambat, L. Rochet, A dynamical contact model with friction using compliance laws of rock mechanics. Computational method and application, in: M. Raous et al. (Eds.), Contact Mechanics, Plenum, New York, 1995
[21] Laursen, T.A.; Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems, Int. J. numer. methods engrg., 40, 863-886, (1997) · Zbl 0886.73067
[22] Laursen, T.A.; Simo, J.C., A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems, Int. J. numer. methods engrg., 36, 3451-3485, (1993) · Zbl 0833.73057
[23] Martins, J.A.C.; Oden, J.T., Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear anal. theory methods appl., 11, 407-428, (1987) · Zbl 0672.73079
[24] J.T. Oden, E.B. Becker, T.L. Lin, L. Demkowicz, Formulation and finite element analysis of a general class of rolling contact problems with finite elastic deformations, in: J. Whiteman (Ed.), Mathematics of Finite Elements and Applications, vol. V, 1984 · Zbl 0588.73200
[25] S. Oh, K.Grosh, J.R. Barber, Analysis of energy transfer of interacting involute gears, Submitted to J. Sound Vibr., 1999
[26] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser Verlag, Base, Boston, 1985 · Zbl 0579.73014
[27] P.D. Panagiotopoulos, Variational principles for contact problems including impact phenomena, in: M. Raous et al. (Eds.), Contact Mechanics, Plenum, New York, 1995
[28] Rabier, P.; Martins, J.A.C.; Oden, J.T.; Campos, L., Existence and local uniqueness of solutions to contact problems in elasticity with nonlinear friction laws, Int. J. engrg. sci., 24, 1755-1768, (1986) · Zbl 0601.73113
[29] M.Raous et al., Contact Mechanics, Plenum, New York, 1995
[30] Rektorys, S.K., The method of discretization in time and partial differential equation, (1982), Reidel Dordrecht · Zbl 0522.65059
[31] Safjan, A.; Demkowicz, L.; Oden, J.T., Adaptive finite element methods for hyperbolic systems with application to transient acoustics, Int. J. numer. methods engrg., 32, 677-707, (1991) · Zbl 0755.76055
[32] Safjan, A.; Oden, J.T., Higher-order Taylor-Galerkin and adaptive hp methods for second-order hyperbolic systems application to elastodynamics, Comput. methods appl. mech. engrg., 103, 187-203, (1993) · Zbl 0767.73077
[33] Schatzman, M.; Bercovier, M., Numerical approximation of a wave equation with unilateral constraints, Math. comput., 187, 55-79, (1989) · Zbl 0683.65088
[34] W. Schiehlen, Unilateral contacts in machine dynamics, IUTAM Symposium, August 1998
[35] P. Shi, On the restitution coefficient for a linear elastic rod, Department of Mechanical Sciences, Oakland University, Rochester MI 48309, 1997
[36] Shi, P., Simulation of impact involving an elastic rod, Comput. methods appl. mech. engrg., 151, 497-499, (1998) · Zbl 0906.73021
[37] Simo, J.C.; Tarnow, N., The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics, Zamp, 43, 757-793, (1992) · Zbl 0758.73001
[38] Simo, J.C.; Tarnow, N.; Doblareé, M., Energy and momentum conserving algoritms for the dynamics of nonlinear rods, Int. J. numer. methods engrg., 38, 1431-1474, (1995) · Zbl 0860.73025
[39] Simo, J.C.; Wriggers, P.; Taylor, R.L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. methods appl. mech. engrg., 50, 163-181, (1985) · Zbl 0552.73097
[40] Taylor, R.L.; Papadopoulos, P., On a finite element method for dynamic contact/impact problems, Int. J. numer. methods engrg., 36, 2123-2140, (1993) · Zbl 0774.73072
[41] Wasfy, T.M.; Noor, A.K., Computational procedure for simulating the contact/impact response in flexible multibody systems, Comput. methods appl. mech. engrg., 147, 153-166, (1997) · Zbl 0887.73069
[42] Watson, B.C.; Noor, A.K., Large-scale contact/impact simulation and sensitivity analysis on distributed memory computers, Comput. methods appl. mech. engrg., 141, 373-388, (1997) · Zbl 0896.73067
[43] Wriggers, P., Finite element algorithms for contact problems, Arch. comput. methods engrg., 2, 1-49, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.