×

zbMATH — the first resource for mathematics

Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. (English) Zbl 1028.82501
Summary: We study the numerical solution of the time-dependent Gross-Pitaevskii equation (GPE) describing a Bose-Einstein condensate (BEC) at zero or very low temperature. In preparation for the numerics we scale the 3d Gross-Pitaevskii equation and obtain a four-parameter model. Identifying ‘extreme parameter regimes’, the model is accessible to analytical perturbation theory, which justifies formal procedures well known in the physical literature: reduction to 2d and 1d GPEs, approximation of ground state solutions of the GPE and geometrical optics approximations. Then we use a time-splitting spectral method to discretize the time-dependent GPE. Again, perturbation theory is used to understand the discretization scheme and to choose the spatial/temporal grid in dependence of the perturbation parameter. Extensive numerical examples in 1d, 2d and 3d for weak/strong interactions, defocusing/focusing nonlinearity, and zero/nonzero initial phase data are presented to demonstrate the power of the numerical method and to discuss the physics of Bose-Einstein condensation.

MSC:
82-08 Computational methods (statistical mechanics) (MSC2010)
81-08 Computational methods for problems pertaining to quantum theory
81V80 Quantum optics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adhikari, S.K., Numerical solution of the two-dimensional gross – pitaevskii equation for trapped interacting atoms, Phys. lett. A, 265, 91-96, (2000)
[2] Adhikari, S.K., Numerical study of the spherically symmetric gross – pitaevskii equation in two space dimensions, Phys. rev. E, 62, 2, 2937-2944, (2000)
[3] Aftalion, A.; Du, Q., Vortices in a rotating bose – einstein condensate: critical angular velocities and energy diagrams in the thomas – fermi regime, Phys. rev. A, 64, 063603, (2001)
[4] Agrawal, G.P.; Potasek, M.J., Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength, Phys. rev. A, 33, 1765, (1986)
[5] Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A., Science, 269, 198-201, (1995)
[6] Bao, W.; Jin, S.; Markowich, P.A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. comput. phys., 175, 487-524, (2002) · Zbl 1006.65112
[7] W. Bao, S. Jin, P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes, SIAM J. Sci. Comput., to appear
[8] W. Bao, W. Tang, Ground state solution of trapped interacting Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., to appear · Zbl 1028.82500
[9] W. Bao, D. Jaksch, Numerical methods for solving damped nonlinear Schrödinger equations with a focusing nonlinearity, SIAM J. Numer Anal., to appear · Zbl 1054.35088
[10] Baym, G.; Pethick, C.J., Phys. rev. lett., 76, 6, (1996)
[11] Bradley, C.C.; Sackett, C.A.; Hulet, R.G., Phys. rev. lett., 78, 985, (1997)
[12] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zhang, T.A., Spectral methods in fluid dynamics, (1988), Springer New York · Zbl 0658.76001
[13] Caradoc-Davis, B.M.; Ballagh, R.J.; Burnett, K., Coherent dynamics of vortex formation in trapped bose – einstein condensates, Phys. rev. lett., 83, 895, (1999)
[14] Caradoc-Davis, B.M.; Ballagh, R.J.; Blakie, P.B., Three-dimensional vortex dynamics in bose – einstein condensates, Phys. rev. A, 62, 011602, (2000)
[15] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P., Numerical solution of the gross – pitaevskii equation using an explicit finite-difference scheme: an application to trapped bose – einstein condensates, Phys. rev. E, 62, 1, 1382-1389, (2000)
[16] Cerimele, M.M.; Pistella, F.; Succi, S., Particle-inspired scheme for the gross – pitaevski equation: an application to bose – einstein condensation, Comput. phys. commun., 129, 82-90, (2000) · Zbl 1112.82305
[17] Chiofalo, M.L.; Succi, S.; Tosi, M.P., Ground state of trapped interacting bose – einstein condensates by an explicit imaginary-time algorithm, Phys. rev. E, 62, 5, 7438-7444, (2000)
[18] Dalfovo, F.; Stringari, S.; Fetter, A.L.; Bayindir, M.; Tanatar, B.; Schneider, B.I.; Feder, D.L., Phys. rev. A, Phys. rev. A, Phys. rev. A, Phys. rev. A, 59, 2232, (1999)
[19] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S., Rev. mod. phys., 71, 463, (1999)
[20] Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W., Phys. rev. lett., 75, 3969, (1995)
[21] Dodd, R.J., Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of bose – einstein condensates, J. res. natl. inst. stan., 101, 4, 545-552, (1996)
[22] Donley, E.A.; Claussen, N.R.; Cornish, S.L.; Roberts, J.L.; Cornell, E.A.; Wieman, C.E., Dynamics of collapsing and exploding bose – einstein condensates, Nature (London), 412, 295, (2001)
[23] Edwards, M.; Ruprecht, P.A.; Burnett, K.; Dodd, R.J.; Clark, C.W.; Hutchinson, D.A.W.; Zaremba, E.; Griffin, A., Phys. rev. lett., Phys. rev. lett., 78, 1842, (1997)
[24] Edwards, M.; Burnett, K., Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Phys. rev. A, 51, 2, 1382-1386, (1995)
[25] Ensher, J.R.; Jin, D.S.; Mathews, M.R.; Wieman, C.E.; Cornell, E.A., Phys. rev. lett., 77, 4984, (1996)
[26] Fornberg, B.; Driscoll, T.A., A fast spectral algorithm for nonlinear wave equations with linear dispersion, J. comput. phys., 155, 456, (1999) · Zbl 0937.65109
[27] Gardiner, S.A.; Jaksch, D.; Dum, R.; Cirac, J.I.; Zoller, P., Nonlinear matter wave dynamics with a chaotic potential, Phys. rev. A, 62, 023612, (2000)
[28] Gardiner, C.W.; Anglin, J.R.; Fudge, T.I.A., The stochastic gross – pitaevskii equation, J. phys. B, 35, 1555, (2002)
[29] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (1977), Soc. for Industr. & Appl. Math Philadelphia · Zbl 0412.65058
[30] ()
[31] Gross, E.P., Nuovo. cimento., 20, 454, (1961)
[32] Hardin, R.H.; Tappert, F.D., Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM rev. chronicle, 15, 423, (1973)
[33] Jin, D.S.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A., Phys. rev. lett., 77, 420, (1996)
[34] Jin, S.; Levermore, C.D.; McLaughlin, D.W., The semiclassical limit of the defocusing nonlinear Schrödinger hierarchy, Cpam, 52, 613-654, (1999)
[35] Laudau, L.; Lifschitz, E., Quantum mechanics: non-relativistic theory, (1977), Pergamon Press New York
[36] Leboeuf, P.; Pavloff, N.; Dunjko, V.; Lorent, V.; Olshanii, M., Phys. rev. A, Phys. rev. lett., 86, 5413, (2001)
[37] Lieb, E.H.; Seiringer, R.; Yngvason, J., Bosons in a trap: a rigorous derivation of the gross – pitaevskii energy functional, Phys. rev. A, 61, 3602, (2000)
[38] Lin, F.H.; Xin, J.X., On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Commun. math. phys., 200, 249, (1999) · Zbl 0920.35145
[39] Markowich, P.A.; Pietra, P.; Pohl, C., Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. math., 81, 595, (1999) · Zbl 0928.65109
[40] P. Markowich, P. Pietra, C. Pohl, H.P. Stimming, A Wigner-measure analysis of the Dufort0-Fraenkel scheme for the Schrödinger equation, SIAM J. Numer. Anal., to appear · Zbl 1029.65098
[41] Matthews, M.R.; Anderson, B.P.; Haljan, P.C.; Hall, D.S.; Wieman, C.E.; Cornell, E.A.; Raman, C.; Abo-Shaeer, J.R.; Vogels, J.M.; Xu, K.; Ketterle, W.; Abo-Shaeer, J.R.; Raman, C.; Vogels, J.M.; Ketterle, W., Phys. rev. lett., Phys. rev. lett., Science, 292, 476, (2001)
[42] Parkins, A.S.; Walls, D.F., Phys. rep., 303, 1, (1998)
[43] A.A. Penckwitt, R.J. Ballagh, C.W. Gardiner, The nucleation, growth and stabilization of vortex lattices, cond-mat/0205037
[44] Pitaevskii, L.P., Zh. eksp. teor. fiz., 40, 646, (1961), (Sov. Phys. JETP 13 (1961) 451)
[45] J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Controlled Collapse of a Bose-Einstein Condensate, cond-mat/0102116
[46] Rokhsar, D.S.; Dum, R.; Cirac, J.I.; Lewenstein, M.; Zoller, P.; Fedichev, P.O.; Shlyapnikov, G.V., Phys. rev. lett., Phys. rev. lett., Phys. rev. A, 60, R1779, (1999)
[47] Ruprecht, P.A.; Holland, M.J.; Burrett, K.; Edwards, M., Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. rev. A, 51, 6, 4704-4711, (1995)
[48] Ruprecht, P.A.; Holland, M.J.; Burnett, K.; Jaksch, D.; Gardiner, S.A.; Schulze, K.; Cirac, J.I.; Zoller, P., Phys. rev. A, Phys. rev. lett., 86, 4733, (2001)
[49] Schneider, B.I.; Feder, D.L., Numerical approach to the ground and excited states of a bose – einstein condensated gas confined in a completely anisotropic trap, Phys. rev. A, 59, 3, (1999)
[50] Strang, G., On the construction and comparison of differential schemes, SIAM J. numer. anal., 5, 506, (1968) · Zbl 0184.38503
[51] Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, II. numerical, nonlinear Schrödinger equation, J. comput. phys., 55, 203, (1984) · Zbl 0541.65082
[52] Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, III. numerical, Korteweg-de Vries equation, J. comput. phys., 55, 231, (1984) · Zbl 0541.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.