zbMATH — the first resource for mathematics

On boundary conditions in lattice Boltzmann methods. (English) Zbl 1027.76630

76M28 Particle methods and lattice-gas methods
Full Text: DOI
[1] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, ”Lattice gas hydrodynamics in two and three dimensions,” Complex Syst. 1, 649 (1987).CPSYEN0891-2513 · Zbl 0662.76101
[2] D. O. Martínez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, ”Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,” Phys. Fluids 6, 1285 (1994).PFLDAS0031-9171 · Zbl 0826.76069
[3] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984). · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[4] M. B. Reider and J. D. Sterling, ”Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations,” Comput. Fluids 24, 459 (1994).CPFLBI0045-7930 · Zbl 0845.76086
[5] R. Cornubert, D. d’Humieres, and D. Levermore, ”A Knudsen layer theory for lattice gases,” Physica D 47, 241 (1991); PDNPDT0167-2789 · Zbl 0717.76100
[6] I. Ginzbourg and P. M. Adler, ”Boundary flow condition analysis for the three-dimensional lattice Boltzmann model,” J. Phys. II 4, 191 (1994).JPAHER1155-4312
[7] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, ”A consistent hydrodynamics boundary condition for the lattice Boltzmann method,” Phys. Fluids 7, 203 (1995).PFLDAS0031-9171 · Zbl 0846.76086
[8] R. S. Maier, R. S Bernard, and D. W. Grunau, ”Boundary conditions for the lattice Boltzmann method,” Los Alamos preprint (1995). · Zbl 1027.76632
[9] X. He and Q. Zou, ”Analysis and boundary conditions of the lattice Boltzmann BGK model with two velocity components,” Los Alamos preprint, LA-UR-95-2293.
[10] T. Inamuro, M. Yoshino, and F. Ogino, ”A non-slip boundary condition for lattice Boltzmann simulations,” to appear in Phys. Fluids. · Zbl 1027.76631
[11] N. S. Martys and H. Chen, ”Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method,” Phys. Rev. E 53, 743 (1995).PLEEE81063-651X
[12] S. Chen, H. Chen, D. O. Martínez, and W. H. Matthaeus, ”Lattice Boltzmann model for simulation of magnetohydrodynamics,” Phys. Rev. Lett. 67, 3776 (1991).PRLTAO0031-9007
[13] H. Chen, S. Chen, and W. H. Matthaeus, ”Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method,” Phys. Rev A 45, 5339 (1992).PLRAAN1050-2947
[14] Y. H. Qian, D. d’Humieres, and P. Lallemand, ”Lattice BGK models for Navier-Stokes equation,” Europhys. Lett. 17, 479 (1992).EULEEJ0295-5075
[15] J. D. Sterling and S. Chen, ”Stability analysis of lattice Boltzmann methods,” J. Comput. Phys. 123, 196 (1996).JCTPAH0021-9991 · Zbl 0840.76078
[16] S. Chen, Z. Wang, G. D. Doolen, and X. Shan, ”Lattice Boltzmann computational fluid dynamics in three dimensions,” J. Stat. Phys. 68, 379 (1992).JSTPBS0022-4715 · Zbl 0925.76516
[17] S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley, ”Lattice Boltzmann simulation for laminar flow in three-dimensional cavity,” submitted to J. Comput. Phys. (1995). · Zbl 0821.76060 · doi:10.1006/jcph.1995.1103
[18] A. K. Gunstensen, D. H. Rothman, and S. Zaleski, ”Lattice Boltzmann model of immiscible fluids,” Phys. Rev. A 43, 4320 (1991); PLRAAN1050-2947
[19] D. Grunau, S. Chen, and K. Eggert, ”A lattice Boltzmann model for multi-phase fluid flows,” Phys. Fluids A 5, 2557 (1993); PFADEB0899-8213 · Zbl 0797.76095
[20] X. Shan and H. Chen, ”Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E 47, 1815 (1993).PLEEE81063-651X
[21] A. J. C. Ladd, ”Numerical simulation of particulate suspensions via a discretized Boltzmann equation. Part I. theoretical foundation,” J. Fluid Mech. 271, 285 (1994).JFLSA70022-1120
[22] A. J. J. Chorin, ”A numerical method for solving incompressible viscous flow problems,” J. Comput. Phys. 2, 12 (1967).JCTPAH0021-9991 · Zbl 0149.44802
[23] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, ”Simulation of cavity flow by the lattice Boltzmann method,” J. Comput. Phys. 118, 329 (1995).JCTPAH0021-9991 · Zbl 0821.76060
[24] L. Luo, ”Lattice gas automata and lattice Boltzmann equations for twodimensional hydrodynamics,” Ph.D. thesis, Georgia Institute of Technology, 1993.
[25] G. McNamara and B. Adler, in Microscopic Simulations of Complex Hydrodynamics Phenomena, edited by M. Mareschal and B. L. Holian (Plenum, New York, 1992).
[26] D. P. Ziegler, ”Boundary conditions for lattice Boltzmann simulations,” J. Stat. Phys. 71, 1171 (1993).JSTPBS0022-4715 · Zbl 0943.82552
[27] R. Peyret and T. Taylor, Computational Methods for Fluid Flow (Springer, New York, 1983). · Zbl 0514.76001 · doi:10.1007/978-3-642-85952-6
[28] S. Pai, Viscous Flow Theory I-laminar Flow (Van Nostrandt, New York, 1956). · Zbl 0074.41603
[29] R. Mei and A. Plotkin, ”A finite difference scheme for the solution of the steady Navier-Stokes equation,” Comput. Fluids 14, 239 (1986); CPFLBI0045-7930 · Zbl 0599.76036
[30] R. Mei, J. Xiong, and R. Tran-Son-Tay, ”Motion of a sphere oscillating at low Reynolds numbers in a viscoelastic fluid filled cylindrical tube,” submitted to J. Non-Newtonian Fluid Mech. (1995).
[31] B. Fornberg, ”Steady incompressible flow past a row of cylinders,” J. Fluid Mech. 225, 655 (1991).JFLSA70022-1120 · Zbl 0722.76023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.