×

zbMATH — the first resource for mathematics

Convergence of a splitting inertial proximal method for monotone operators. (English) Zbl 1027.65077
The authors suggest a relaxation type iterative algorithm for finding a zero of the sum of two maximal monotone operators. They prove the weak convergence of the proposed algorithm.

MSC:
65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alvarez, F., On the minimizing property of a second order dissipative system in Hilbert space, SIAM J. control optim., 38, 4, 1102-1119, (2000) · Zbl 0954.34053
[2] Alvarez, F.; Attouch, H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set valued anal., 9, 3-11, (2001) · Zbl 0991.65056
[3] A.S. Antipin, Continuous and iterative process with projection operators and projection-like operators, Voprosy Kibernetiki. Vychislitel’nye Voprosy Analiza Bol’shikh Sistem, AN SSSR, Scientific Counsel on the Complex Problem “Cybernetics”, Moscow, 1989, pp. 5-43.
[4] Attouch, H.; Goudou, X.; Redont, P., The heavy ball with friction. I. the continuous dynamical system, Comm. contemp. math., 2, 1, 1-34, (2000) · Zbl 0983.37016
[5] Bertsekas, D.P., Constrained optimization and Lagrange multiplier methods, (1982), Academic Press New York · Zbl 0453.65045
[6] Chen, H.-G.; Rockafellar, R.T., Convergence rates in forward-backward splitting, SIAM J. optim., 7, 421-444, (1997) · Zbl 0876.49009
[7] J. Ekstein, Splitting methods for monotone operators with application to parallel optimization, Dissertation, Massachussets Institute of Technology, 1989.
[8] Ekstein, J.; Bertsekas, D.P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. programming, 55, 293-318, (1992) · Zbl 0765.90073
[9] Gabay, D., Applications of the method of multipliers to variational inequalities, (), 299-331
[10] Han, S.P.; Lou, G., A parallel algorithm for a class of convex programs, SIAM J. control optim., 26, 345-355, (1988) · Zbl 0644.90068
[11] F. Jules, P.E. Maingé, Numerical approach to a stationary solution of a second order dissipative dynamical system, Optimization, to appear.
[12] Lions, P.L.; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. numer. anal., 16, 964-979, (1979) · Zbl 0426.65050
[13] B. Martinet, Régularisation d’inéquations variationnelles par approximations successives, Rev. Francaise Inf. Rech. Oper. R-3 (1970) 154-159.
[14] B. Mercier, Inéquations variationnelles de la mécanique, Pub. Math. Orsay, 80.01, Université de Paris-Sud, Orsay, 1980.
[15] Moudafi, A.; Théra, M., Finding a zero of the sum of two maximal monotone operators, J. optim. theory appl., 94, 425-448, (1997) · Zbl 0891.49005
[16] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. amer. math. soc., 73, 591-597, (1967) · Zbl 0179.19902
[17] Passty, G.B., Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces, J. math. anal. appl., 72, 383-390, (1979) · Zbl 0428.47039
[18] Polyak, B.T., Some methods of speeding up the convergence of iterative methods, Zh. vychisl. mat. mat. fiz., 4, 1-17, (1964)
[19] Rockafellar, R.T., Monotone operator and the proximal point algorithm, SIAM J. control. opt., 14, 5, 877-898, (1976) · Zbl 0358.90053
[20] Sibony, M., Méthodes itératives pour LES équations et inéquations non linéaires de type monotone, Calcolo, 7, 65-183, (1970) · Zbl 0225.35010
[21] Svaiter, B.F.; Burachik, R.S.; Iusem, A.N., Enlargement of maximal monotone operators with application to variational inequalities, Set-valued anal., 5, 159-180, (1997) · Zbl 0882.90105
[22] Svaiter, B.F.; Burachik, R.S., ε-enlargements of maximal monotone operators in Banach spaces, Set-valued anal., 7, 117-132, (1999) · Zbl 0948.47050
[23] Tseng, P., Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Math. programming, 48, 249-263, (1990) · Zbl 0725.90079
[24] Tseng, P., Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. control optim., 29, 119-138, (1991) · Zbl 0737.90048
[25] Zhu, D.L.; Marcotte, P., Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. optim., 9, 3, 714-726, (1996) · Zbl 0855.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.