zbMATH — the first resource for mathematics

On a fixed point theorem of Ky Fan. (English) Zbl 1027.47058
The authors extend a classical fixed point theorem (in a generalized sense) by Ky Fan [Math. Z. 112, 234-240 (1969; Zbl 0185.39503)].

47H10 Fixed-point theorems
54H25 Fixed-point and coincidence theorems (topological aspects)
Full Text: DOI
[1] Fan Ky, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 1969, 112:234–240 · Zbl 0185.39503 · doi:10.1007/BF01110225
[2] Beer G., Pai D. V., Proximal maps, prox maps and coincidence points, Numer. Funct. Anal. Optimiz., 1990, 11:429–448 · Zbl 0726.41035 · doi:10.1080/01630569008816382
[3] Ding X. P., Tan K. K., A set-valued generalization of Fan’s best approximation theorem, Canad. J. Math., 1992, 44:784–796 · Zbl 0761.47037 · doi:10.4153/CJM-1992-046-9
[4] Lin T. C., A note on a theorem of Ky Fan, Canad. Math. Bulletin, 1979, 22:513–515 · Zbl 0429.47019 · doi:10.4153/CMB-1979-067-x
[5] Lin T. C., Yen C. L., Applications of the proximity map to fixed point theorems in Hilbert space, J. Approx. Theory, 1988, 52:141–148 · Zbl 0643.47053 · doi:10.1016/0021-9045(88)90053-6
[6] Reich S., Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl., 1978, 62:104–113 · Zbl 0375.47031 · doi:10.1016/0022-247X(78)90222-6
[7] Sehgal V. M., A simple proof of a theorem of Ky Fan, Proc. Amer. Math. Soc., 1977, 63:368–369 · Zbl 0355.47038
[8] Sehgal V. M., Singh S. P., A generalization to multifunctions of Fan’s best approximation, Proc. Amer. Math. Soc., 1988, 102:534–537 · Zbl 0672.47043
[9] Sehgal V. M., Singh S. P., Watson B., Best approximation and fixed point theorems, Bull. Allahabad Math. Soc., 1991, 6:11–27 · Zbl 1097.47521
[10] Singh S. P., Watson B., Proximity maps and fixed points, J. Approx. Theory, 1983, 28:72–76 · Zbl 0518.47040 · doi:10.1016/0021-9045(83)90069-2
[11] Waters C. W., Some fixed point theorems for radial contractions, nonexpansive and set-valued mappings, Ph. D. Thesis, University of Wyoming, U. S. A., 1994
[12] Kakutani S., A generalization of Brouwer’s fixed point theorem, Duke Math. J., 1941, 8:457–459 · Zbl 0061.40304 · doi:10.1215/S0012-7094-41-00838-4
[13] Fan Ky, Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 1952, 38:121–126 · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[14] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3:165–169 · Zbl 0046.33304
[15] Michael E., Continuous selections I, Ann. Math., 1956, 63:361–382 · Zbl 0071.15902 · doi:10.2307/1969615
[16] Hu S., Papageorgiou N. S., Handbook of multivalued analysis, Vol. I, Kluwer, Dordrecht, 1997 · Zbl 0887.47001
[17] Schwartz J. T., Nonlinear functional analysis, Gordon and Breach, New York, 1969
[18] Hukuhara M., Sur l’application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac., 1967, 10:43–66 · Zbl 0155.19402
[19] De Blasi F. S., Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl., 1985, 106:1–18 · Zbl 0574.54012 · doi:10.1016/0022-247X(85)90126-X
[20] Dunford N., Schwartz J. T., Linear operators, Part I, J. Wiley, New York, 1958
[21] De Blasi F. S., Georgiev P. G., Hukuhara topological degree for non compact valued multifunctions, Centro V. Volterra, Università di Roma ”Tor Vergata”, preprint No. 377, 1999
[22] Cellina A., A theorem on the approximation of compact multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 1969, 8:149–153 · Zbl 0194.44704
[23] Borisovitch Y. G., Gel’man B. D., Mukhamadiev E., Obukhovskii V. V., On the rotation of multivalued vector fields, Dokl. Akad. Nauk SSSR, 1969, 187:971–973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.