×

zbMATH — the first resource for mathematics

Robust stabilization for a class of discrete-time nonlinear systems via output feedback: The unified LMI approach. (English) Zbl 1026.93048
The paper focuses on sufficient convex linear matrix inequality (LMI) formulations of the stability analysis and controller design problems for a linear discrete-time system affected by nonlinear additive perturbations. It is assumed that the nonlinear perturbation is bounded by a given quadratic function of the system state and input. An elegant LMI formulation is provided for analyzing stability in the presence of such nonlinearities (necessary and sufficient LMI condition of Lemma 2), and then it is extended throughout the paper in a routine manner to static-output feedback design (sufficient LMI condition of Theorem 1), dynamic output feedback design (sufficient LMI condition of Theorem 3), as well as a decentralized controller design. The paper is reasonably well written, and can be considered as a minor extension of existing results for continuous-time systems or less general nonlinearities. A discussion on how conservative (pessimistic) the sufficient LMI conditions can be is missing however, in particular concerning the use of the restrictive equality constraint \(CQ=ZC\) in the static output feedback condition of Theorem 1.

MSC:
93D21 Adaptive or robust stabilization
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
15A39 Linear inequalities of matrices
93C73 Perturbations in control/observation systems
Software:
LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BOYD S. P., Linear Matrix Inequalities in System and Control Theory 15 (1994) · Zbl 0816.93004
[2] GAHINET P., LMI Control Toolbox (1995)
[3] DOI: 10.1016/0167-6911(94)90030-2 · Zbl 0820.93059 · doi:10.1016/0167-6911(94)90030-2
[4] DOI: 10.1109/9.273348 · Zbl 0796.93102 · doi:10.1109/9.273348
[5] DOI: 10.1080/00207179408921466 · Zbl 0800.93989 · doi:10.1080/00207179408921466
[6] DOI: 10.1016/0005-1098(86)90045-2 · Zbl 0602.93055 · doi:10.1016/0005-1098(86)90045-2
[7] SILIAK D. D., Decentralized Control of Complex Systems (1991)
[8] DOI: 10.1155/S1024123X00001435 · Zbl 0968.93075 · doi:10.1155/S1024123X00001435
[9] DOI: 10.1080/00207170010038712 · Zbl 1022.93034 · doi:10.1080/00207170010038712
[10] DOI: 10.1109/9.481614 · Zbl 0842.93065 · doi:10.1109/9.481614
[11] DOI: 10.1016/S0167-6911(00)00113-4 · Zbl 0974.93052 · doi:10.1016/S0167-6911(00)00113-4
[12] YAKUBOVICH V. A., Vestnick Leningrad Univ. Math. 4 pp 73– (1977)
[13] DOI: 10.1080/00207178908953356 · Zbl 0684.93022 · doi:10.1080/00207178908953356
[14] DOI: 10.1016/0167-6911(95)00049-6 · Zbl 0875.93108 · doi:10.1016/0167-6911(95)00049-6
[15] DOI: 10.1080/00207179508921926 · Zbl 0821.93061 · doi:10.1080/00207179508921926
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.