×

zbMATH — the first resource for mathematics

Risk processes perturbed by alpha-stable Lévy motion. (English) Zbl 1026.60516

MSC:
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1090/S0002-9947-1957-0084900-X · doi:10.1090/S0002-9947-1957-0084900-X
[2] Billingsley P., Probability and measure (1986) · Zbl 0822.60002
[3] Bingham N. H., Regular variation (1987) · doi:10.1017/CBO9780511721434
[4] DOI: 10.1016/0167-6687(91)90023-Q · Zbl 0723.62065 · doi:10.1016/0167-6687(91)90023-Q
[5] DOI: 10.1007/BF00535504 · Zbl 0397.60024 · doi:10.1007/BF00535504
[6] Embrechts P., Zeitschrift für Operations Research 39 pp 1– (1994)
[7] Feller W., An introduction to probability theory and its applications (1971) · Zbl 0219.60003
[8] Furrer H. J., Insurance Math. Econ. (1997)
[9] DOI: 10.1016/0167-6687(94)00017-4 · Zbl 0814.62066 · doi:10.1016/0167-6687(94)00017-4
[10] Gerber H. U., Scand. Actuarial J. pp 205– (1970) · doi:10.1080/03461238.1970.10405664
[11] DOI: 10.1007/978-1-4613-9058-9 · doi:10.1007/978-1-4613-9058-9
[12] Ibragimov I. A., Independent and stationary sequences of random variables (1971) · Zbl 0219.60027
[13] Janicki A., Simulation and chaotic behavior of stable processes (1994)
[14] Samorodnitsky G., Stable non-Gaussian random processes (1994) · Zbl 0925.60027
[15] DOI: 10.1016/0167-6687(93)90535-W · Zbl 0790.62098 · doi:10.1016/0167-6687(93)90535-W
[16] DOI: 10.1137/1109090 · doi:10.1137/1109090
[17] Zolotarev V. M., One-dimensional stable distributions (1986) · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.