zbMATH — the first resource for mathematics

Nessyahu-Tadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids. (English) Zbl 1025.65048
Summary: A new modified version of the Nessyahu-Tadmor (NT) 1-dimensional finite volume central scheme is presented, as well as corresponding new versions for 2D-structured and 3D-unstructured grids inspired from the NT-scheme [cf. H. Nessyahu and E. Tadmor, J. Comput. Phys. 87, 408-463 (1990; Zbl 0697.65068)]. The modification avoids the intermediate predictor time step between t\(^{n}\) and t\(^{n+1}\). Although this does not really bring about substantial accuracy/computer time improvements in the 1D case, in the 2- and 3-dimensional cases, the modified scheme does lead to important reductions in computer times. 3D comparative simulations for the shock tube problem and for a supersonic inviscid flow through a channel with a 4\(\%\) circular bump are presented.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76L05 Shock waves and blast waves in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
[1] Aftosmis, M.; Gaitonde, D.; Tavares, T.S., Behavior of linear reconstruction techniques on unstructured meshes, Aiaa j., 33, 11, 2038-2049, (1995) · Zbl 0856.76070
[2] P. Arminjon, A. Madrane, A. St-Cyr, Non-oscillatory Lax-Friedrichs type central finite volume methods for 3-D flows on unstructured tetrahedral grids, in: D. Pelletier (Ed.), 8th Annual Conference of the CFD Society of Canada, June 11-13, 2000, Montreal, Vol. 1, 2000, pp. 43-48
[3] P. Arminjon, A. Madrane, A. St-Cyr, New Lax-Friedrichs-type finite volume schemes on 2 and 3D Cartesian staggered grids, in: J. Militzer (Ed.), 7th Annual Conference of the CFD Society of Canada, May 30 to June 1, 1999, Halifax, 1999, pp. (3-3)-(3-10)
[4] Arminjon, P.; Madrane, A.; St-Cyr, A., Numerical simulation of 3-D flows with a non-oscillatory central scheme on staggered unstructured tetrahedral grids, (), 59-68
[5] P. Arminjon, D. Stanescu, M.C. Viallon, A two-dimensional finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for compressible flows, in: M. Hafez, K. Oshima (Eds.), Proc. of the 6th Internat. Symp. on Comp. Fluid Dynamics, Lake Tahoe, Nevada, September 4-8, 1995, Vol. IV, pp. 7-14
[6] Arminjon, P.; St-Cyr, A.; Madrane, A., New 2- and 3-dimensional non-oscillatory central finite volume methods for staggered Cartesian grids, Appl. numer. math., 40, 3, 367-390, (2002) · Zbl 0994.65092
[7] P. Arminjon, A. St-Cyr, New Lax-Friedrichs-type finite volume schemes in 1, 2 and 3D without time predictor step, in: G.E. Schneider (Ed.), Proceedings of the 9th Annual Conference of the CFD Society of Canada, May 27-29, 2001, Kitchener, Ontario, pp. 63-68
[8] Arminjon, P.; Viallon, M.C., Généralisation du schéma de nessayahu – tadmor pour une équation hyperbolique à deux dimensions d’espace, C. R. acad. sci. Paris ser. I, 320, 85-88, (1995) · Zbl 0831.65091
[9] Arminjon, P.; Viallon, M.C., Convergence of a finite volume extension of the nessyahu – tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equation, SIAM J. numer. anal., 36, 3, 738-771, (1999) · Zbl 0924.65096
[10] Arminjon, P.; Viallon, M.C.; Madrane, A., A finite volume extension of the lax – friedrichs and nessyahu – tadmor schemes for conservation laws on unstructured grids, Internat. J. comp. fluid dynamics, 9, 1, 1-22, (1997), restricted version Centre de Rech. Math., Université de Montréal, 1995 · Zbl 0913.76063
[11] Bianco, F.; Puppo, G.; Russo, G., High-order central schemes for hyperbolic systems of conservation laws, SIAM J. sci. comput., 21, 1, 294-322, (1999) · Zbl 0940.65093
[12] (), See Chapter 4, C.W. Shu, pp. 325-432
[13] Eidelman, S.; Collela, P.; Shreeve, R.P., Application of the Godunov method and its second-order extension to cascade flow modeling, Aiaa j., 22, 11, 1609-1615, (1984) · Zbl 0555.76016
[14] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong Stability Preserving High-Order Time Discretization Methods, ICASE Report No. 2000-15, 2000 · Zbl 0967.65098
[15] Haasdonk, B.; Kröner, D.; Rohde, C., Convergence of a staggered lax – friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids, Numer. math., 88, 459-484, (2001) · Zbl 1001.65102
[16] Jiang, G.; Tadmor, E., Non-oscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. sci. comput., 19, 1892-1917, (1998) · Zbl 0914.65095
[17] Katsaounis, T.; Levy, D., A modified structured central scheme for 2D hyperbolic conservation laws, Appl. math. lett., 12, 6, 86-89, (1999) · Zbl 0941.65094
[18] Kobayashi, M.H.; Pereira, J.C., Characteristic-based pressure correction at all speeds, Aiaa j., 34, 2, 272-280, (1996) · Zbl 0895.76054
[19] Kröner, D., Numerical schemes for conservation laws, Wiley – teubner series, adv. numer. math., (1997), Wiley Stuttgart · Zbl 0872.76001
[20] M. Küther, A priori and a posteriori error estimates for the staggered Lax-Friedrichs scheme in multi dimensions for scalar nonlinear conservation laws, Preprint No. 19/2000, Mathematische Fakultät, University of Freiburg, Freiburg, Germany, 2000
[21] Küther, M., Error estimates for the staggered lax – friedrichs scheme on unstructured grids, SIAM J. numer. anal., 39, 4, 1269-1301, (2001) · Zbl 1020.65061
[22] Lax, P.D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. pure appl. math., 7, 159-193, (1954) · Zbl 0055.19404
[23] Levy, D.; Puppo, G.; Russo, G., A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws, SIAM J. sci. comput., 24, 2, 480-506, (2002) · Zbl 1014.65079
[24] K.-A. Lie, S. Noelle, Remarks on high-resolution non-oscillatory central schemes for multidimensional systems of conservation laws, Part I: An improved quadrature rule for the flux computation, Preprint No. 679, Sonderforschungsbereich 256, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 2000
[25] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. comput. phys., 87, 2, 408-463, (1990) · Zbl 0697.65068
[26] Pareschi, L., Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms, SIAM J. numer. anal., 39, 4, 1395-1417, (2001) · Zbl 1020.65048
[27] Sabac, F., The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws, SIAM J. numer. anal., 34, 6, 2306-2318, (1997) · Zbl 0992.65099
[28] Shu, C.-W., Total-variation diminishing time discretizations, SIAM J. sci. statist. comput., 9, 1073-1084, (1988) · Zbl 0662.65081
[29] Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. comput. phys., 27, 1-31, (1978) · Zbl 0387.76063
[30] Stroud, A.H., Numerical quadrature and solution of ordinary differential equations, (1974), Springer Berlin · Zbl 0298.65018
[31] van Albada, G.D.; van Leer, B.; Roberts, W.W., A comparative study of computational methods in cosmic gas dynamics, Astronom. astrophys., 108, 76-84, (1982) · Zbl 0492.76117
[32] van Leer, B., Towards the ultimate conservative difference scheme IV. A new approach to numerical convection, J. comput. phys., 23, 276-299, (1977) · Zbl 0339.76056
[33] van Leer, B., Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[34] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. comput. phys., 118, 120-130, (1995) · Zbl 0858.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.