×

zbMATH — the first resource for mathematics

The combination theorem and quasiconvexity. (English) Zbl 1025.20028

MSC:
20F67 Hyperbolic groups and nonpositively curved groups
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20E08 Groups acting on trees
20F65 Geometric group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-4049(93)90085-8 · Zbl 0805.57001 · doi:10.1016/0022-4049(93)90085-8
[2] DOI: 10.1090/S0894-0347-98-00264-1 · Zbl 0906.20022 · doi:10.1090/S0894-0347-98-00264-1
[3] Bestvina M., J. Diff. Geom. 35 pp 85– (1992) · Zbl 0724.57029 · doi:10.4310/jdg/1214447806
[4] Bestvina M., J. Diff. Geom. 43 (4) pp 783– (1996) · Zbl 0862.57027 · doi:10.4310/jdg/1214458531
[5] Bridson M., Quart. J. Math. Oxford Ser. 2 pp 1–
[6] DOI: 10.1016/0022-4049(91)90139-S · Zbl 0749.20006 · doi:10.1016/0022-4049(91)90139-S
[7] DOI: 10.1142/S021819679600043X · Zbl 0879.20014 · doi:10.1142/S021819679600043X
[8] DOI: 10.1016/S0022-4049(96)00020-5 · Zbl 0885.20028 · doi:10.1016/S0022-4049(96)00020-5
[9] Gromov M., MSRI Publication 8 pp 75– (1987)
[10] Gromov M., Geometric Group Theory 2 pp 1– (1991)
[11] Gersten S., Ann. Math. 2 pp 125–
[12] DOI: 10.1090/S0002-9947-98-01792-9 · Zbl 0897.20030 · doi:10.1090/S0002-9947-98-01792-9
[13] DOI: 10.1142/S0218196797000344 · Zbl 0912.20031 · doi:10.1142/S0218196797000344
[14] DOI: 10.1080/00927879908826481 · Zbl 0922.20046 · doi:10.1080/00927879908826481
[15] DOI: 10.1017/S0305004199003862 · Zbl 0942.20026 · doi:10.1017/S0305004199003862
[16] DOI: 10.1090/S0002-9947-98-01773-5 · Zbl 0902.20018 · doi:10.1090/S0002-9947-98-01773-5
[17] DOI: 10.4153/CJM-1996-065-6 · Zbl 0873.20025 · doi:10.4153/CJM-1996-065-6
[18] DOI: 10.1007/PL00001624 · Zbl 0880.57001 · doi:10.1007/PL00001624
[19] Mitra M., J. Diff. Geom. 48 (1) pp 135– (1998)
[20] DOI: 10.1016/S0040-9383(97)00036-0 · Zbl 0907.20038 · doi:10.1016/S0040-9383(97)00036-0
[21] Mitra M., Coventry pp 341– (1998)
[22] DOI: 10.1016/0022-4049(94)90063-9 · Zbl 0822.20038 · doi:10.1016/0022-4049(94)90063-9
[23] DOI: 10.1017/S1446788700015044 · Zbl 0274.20042 · doi:10.1017/S1446788700015044
[24] DOI: 10.2307/2951832 · Zbl 0910.57002 · doi:10.2307/2951832
[25] DOI: 10.1007/s002220050172 · Zbl 0887.20017 · doi:10.1007/s002220050172
[26] Short H., New Jersey pp 168– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.