×

zbMATH — the first resource for mathematics

Hyperbolic methods for Einstein’s equations. (English) Zbl 1024.83004
Summary: The author reviews evolutionary aspects of general relativity, in particular those related to the hyperbolic character of the field equations and to the applications or consequences that this property entails. He looks at several approaches to obtaining symmetric hyperbolic systems of equations out of Einstein’s equations by either removing some gauge freedoms from them, or by considering certain linear combinations of a subset of them.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35Q75 PDEs in connection with relativity and gravitational theory
58J45 Hyperbolic equations on manifolds
35L99 Hyperbolic equations and hyperbolic systems
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr., J.W., “Hyperbolic formulation of general relativity”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 18 January 1998, http://xxx.lanl. gov/abs/gr-qc/9703010. 4.1
[2] Abrahams, A.; Anderson, A.; Choquet-Bruhat, Y.; York, JW, “Einstein and Yang-Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75, 3377-3381, (1995) · Zbl 1020.83503
[3] Abrahams, A.; Anderson, A.; Choquet-Bruhat, Y.; York, JW, “A nonstrictly hyperbolic system for the Einstein equations with arbitrary lapse and shift”, C. R. Acad. Sci., 323, 835-841, (1996) · Zbl 0916.35126
[4] Abrahams, A.; Anderson, A.; Choquet-Bruhat, Y.; York, JW, “Geometrical hyperbolic systems for general relativity and gauge”, Class. Quantum Grav., 14, a9-a22, (1997) · Zbl 0866.58059
[5] Alcubierre, M., “Appearance of coordinate shocks in hyperbolic formalisms of general relativity”, Phys. Rev. D, 55, 5981-5991, (1997)
[6] Alcubierre, M., and Masso, J., “Pathologies of hyperbolic gauges in general relativity and other field theories”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, http://xxx.lanl.gov/abs/gr-qc/9709024. 5.2
[7] Ashtekar, A., “New Hamiltonian formulation of general relativity”, Phys. Rev. D, 36, 1587-1602, (1987)
[8] Ashtekar, A., New Perspectives in Canonical Gravity, (Bibliopolis, Napoli, 1988). 4.3 · Zbl 0704.53056
[9] Bona, C.; Massó, J., “Hyperbolic evolution system for numerical relativity”, Phys. Rev. Lett., 68, 1097-1099, (1992) · Zbl 0969.83501
[10] Bona, C.; Massó, J.; Seidel, E.; Stela, J., First order hyperbolic formalism for numerical relativity, Physical Review D, 56, 3405-3415, (1997)
[11] Bona, C.; Massó, J.; Seidel, E.; Stela, J., “New Formalism for Numerical Relativity”, Phys. Rev. Lett., 75, 600-603, (1995)
[12] Bona, C.; Massó, J.; Stela, J., “Numerical black holes: a moving grid approach”, Phys. Rev. D, 51, 1639-1645, (1995)
[13] Bruhat, Y., “Theoreme d’ existence pour certain systemes d’equations aux derivees partielles nonlinaires”, Acta Math., 88, 141-225, (1952) · Zbl 0049.19201
[14] Bruhat, Y., “Un theoreme d’inestabilite pour certain equations hyperboliques nonlinaires”, C. R. Acad. Sci., 276A, 281, (1973)
[15] Choquet-Bruhat, Y.; Witten, L. (ed.), “The Cauchy Problem”, 68-103, (1962), New York, USA
[16] Choquet-Bruhat, Y., “Espaces temps eineiniens généraux, chocs gravitationnels”, Ann. Inst. Henri Poincare, 8, 327-338, (1968) · Zbl 0162.29703
[17] Choquet-Bruhat, Y.; Christodoulou, D., “Elliptic systems in \(H_{sg}\) spaces on manifolds which are Euclidean at infinity”, Acta Math., 145, 129-150, (1981) · Zbl 0484.58028
[18] Choquet-Bruhat, Y.; Christodoulou, D.; Francaviglia, M., “Cauchy data on a manifold”, Ann. Inst. Henri Poincare, A, 29, 241-255, (1978) · Zbl 0412.35018
[19] Choquet-Bruhat, Y.; Ruggeri, T., “Hyperbolicity of the 3+1 System of Einstein Equations”, Commun. Math. Phys., 89, 269-275, (1983) · Zbl 0521.53034
[20] Choquet-Bruhat, Y.; York, JW; Held, A. (ed.), “The Cauchy Problem”, (1980), New York, USA
[21] Choquet-Bruhat, Y., and York Jr., J.W., “Well posed reduced systems for the Einstein equations”, Comptes Ren. Acad. Paris, 231(I), 1089-1095, (1995). For a related online version see: Y. Choquet-Bruhat, et al., “Well posed reduced systems for the Einstein equations”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, http://xxx.lanl.gov/abs/gr-qc/9606001. · Zbl 0839.53063
[22] Choquet-Bruhat, Y., and York Jr., J.W., “Mixed elliptic and hyperbolic system for the Einstein equations”. Editions Pitagora, (1996). For a related online version see: Y. Choquet-Bruhat, et al., “Mixed elliptic and hyperbolic system for the Einstein equations”, (January, 1996), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, http://xxx.lanl.gov/abs/gr-qc/9601030. 5.3
[23] Christodoulou, D., and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, (Princeton University Press, Princeton, USA, 1993). 1, 3, 5.3 · Zbl 0827.53055
[24] Christodoulou, D.; O’Murchadha, N., “The Boost Problem in General Relativity”, Commun. Math. Phys., 80, 271-300, (1981) · Zbl 0477.35081
[25] Cutler, C.; Wald, R., “Existence of radiating Eintein-Maxwell solutions which are \(C\)∞ on all of \(J^+\) and \(J^-\)”, Class. Quantum Grav., 6, 453-466, (1989) · Zbl 0675.53061
[26] DeTurk, D., “The Cauchy problem for Lorentz metrics with prescribed Ricci curvature”, Comp. Math., 48, 327-349, (1983) · Zbl 0527.53037
[27] Fischer, A.; Marsden, J., “The Einstein Evolution Equations as a First-Order Symmetric Hyperbolic Quasilinear System”, Commun. Math. Phys., 28, 1-38, (1972) · Zbl 0247.35082
[28] Fischer, A.; Marsden, J., “General relativity, partial differential equations, and dynamical systems”, AMS Proc. Symp. Pure Math., 23, 309-327, (1973)
[29] Friedrich, H., “The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system”, Proc. R. Soc. London, Ser. A, 378, 401-421, (1981) · Zbl 0481.58026
[30] Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169-184, (1981) · Zbl 0454.58017
[31] Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100, 525-543, (1985) · Zbl 0588.35058
[32] Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451-1469, (1996) · Zbl 0851.58044
[33] Frittelli, S., “Note on the propagation of the constraints in standard 3+1 general relativity”, Phys. Rev. D, 55, 5992-5996, (1997)
[34] Frittelli, S.; Reula, O., “On the newtonian limit of general relativity”, Commun. Math. Phys., 166, 221-235, (1994) · Zbl 0812.35147
[35] Frittelli, S.; Reula, O., “First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge”, Phys. Rev. Lett., 76, 4667-4670, (1996)
[36] Geroch, R., “Partial Differential Equations of Physics”, (February, 1996), [Online Los Alamos Archive Preprint]: cited on 19 January 1998, http://xxx.lanl.gov/abs/gr-qc/9602055. Scottish Summer School in Theoretical Physics. 1.2, 6, 3
[37] Geroch, R., “The Local Nonsingularity Theorem”, J. Math. Phys., 24, 1851-1858, (1983) · Zbl 0514.58033
[38] Geroch, R.; Xanthopolous, B, C., “Asymptotic Simplicity Is Stable”, J. Math. Phys., 19, 714-719, (1978)
[39] Gustaffson, B., Kreiss, H.-O., and Oliger, J., Time-Dependent Problems and Difference Methods, (Wiley, New York, USA, 1995). 1.2, 2, 2.4, 6 · Zbl 0843.65061
[40] Hadamard, J., Lectures on Cauchy’s problem in linear partial differential equations, (Yale University Press, New Haven, Connecticut, 1921). 2.1 · Zbl 0049.34805
[41] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, (Cambridge University Press, Cambridge, United Kingdom, 1973). 2, 3.1, 7 · Zbl 0265.53054
[42] Hughes, T.; Kato, T.; Marsden, J., “Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity”, Arch. Rat. Mech. Anal., 63, 273-294, (1976) · Zbl 0361.35046
[43] Iriondo, M., Leguizamón, E., and Reula, O., “Fast and Slow Solutions in General Relativity: The Initialization Procedure”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, http://xxx.lanl.gov/abs/gr-qc/9709078. 5.3
[44] Iriondo, M., Leguizamón, E., and Reula, O., “The Newtonian Limit on Asymptotically Null Foliations”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 17 January 1998, http://xxx.lanl.gov/gr-qc/970907. 5.3
[45] Iriondo, M.; Leguizamón, E.; Reula, O., “Einstein’s equations in Ashtekar variables constitute a symmetric hyperbolic system”, Phys. Rev. Lett., 79, 4732-4735, (1997) · Zbl 0951.83002
[46] John, F., Formation of Singularities in Elastic Waves. Lecture Notes in Phys., (Springer-Verlag, 1984). 2, 4, 4.2
[47] Klainerman, S., “Uniform decay estimates and the Lorentz invariance of the classical wave equation”, Commun. Pure Appl. Math., 38, 321-332, (1985) · Zbl 0635.35059
[48] Klainerman, S., “The null condition and global existence to nonlinear wave equations”, Lect. Appl. Math., 23, 293-326, (1986) · Zbl 0599.35105
[49] Klainerman, S., “Remarks on the global Sobolev inequalities in Minkowski Space”, Commun. Pure Appl. Math., 40, 111-117, (1987) · Zbl 0686.46019
[50] Kreiss, H., and Lorentz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, (Acad. Press, San Diego, USA, 1989). 1.2, 2, 6
[51] Kreiss, H. O., “Über sachgemässe Cauchyprobleme”, Math. Scand., 7, 71-80, (1959) · Zbl 0090.09801
[52] Kreiss, H-O; Nagy, G.; Ortiz, O.; Reula, O., “Global Existence and Exponential Decay for Hyperbolic Dissipative Relativistic Fluid Theories”, J. Math. Phys., 38, 5272-5279, (1997) · Zbl 0943.76097
[53] Lanczos, C., “Ein vereinfachendes Koordinatensystem fur die Einsteinschen Gravitationsgleichungen”, Phys. Z., 23, 537-539, (1922) · JFM 48.1023.01
[54] Leray, J., Hyperbolic Differential Equations, (Institute for Advanced Studies, Princeton, New Jersey, 1953). 2.1, 2.2
[55] Leray, J.; Ohya, Y., “Equations et Systemes Non-Lineaires hyperboliques non-stricts”, Math. Ann., 170, 167, (1967) · Zbl 0146.33701
[56] Rendall, A., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89-112, (1994) · Zbl 0816.53058
[57] Sideris, T., “Formation of Singularities in 3-d Compressible Fluids”, Commun. Math. Phys., 101, 475-485, (1985) · Zbl 0606.76088
[58] Taylor, M., Pseudodifferential operators and nonlinear PDE — Progress in Mathematics 100, (Birkhauser, Boston, USA, 1991). 3, 3, 6
[59] Putten, MHPM; Eardley, DM, “Nonlinear wave equations for relativity”, Phys. Rev. D, 53, 3056-3063, (1996)
[60] Wald, R., General Relativity, (The University of Chicago Press, Chicago, USA, 1984). 2 · Zbl 0549.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.