×

zbMATH — the first resource for mathematics

DSC time-domain solution of Maxwell’s equations. (English) Zbl 1024.78011
Summary: A new computational algorithm, the discrete singular convolution (DSC), is introduced for solving scattering and guided wave problems described by time-domain Maxwell equations. The DSC algorithm is utilized for the spatial discretization and the fourth-order Runge-Kutta scheme is used for the time advancing. Staggered meshes are used for electromagnetic fields. Four standard test problems, a hollow air-filled waveguide, a dielectric slab-loaded rectangular waveguide, a shield microstrip line and a dielectric square, are employed to illustrate the usefulness, to test the accuracy and to explore the limitation of the DSC algorithm. Results are compared with those of finite difference, scaling function multi-resolution time domain, and finite element-based high frequency structure simulator. Numerical experiments indicate that the present algorithm is a promising approach for achieving high accuracy in electromagnetic wave computations.

MSC:
78M25 Numerical methods in optics (MSC2010)
78A50 Antennas, waveguides in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yee, K.S., Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE trans. antennas propagat., 14, 302-307, (1976) · Zbl 1155.78304
[2] Driscoll, T.A.; Fornberg, B., Note on nonsymmetric finite differences for maxwell’s equations, J. comput. phys., 161, 723-727, (2000) · Zbl 0998.78013
[3] Mohammadian, A.H.; Shankar, V.; Hall, W.F., Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure, Comput. phys. commun., 68, 181-262, (1991)
[4] Hesthaven, J.S.; Warburton, T., Nodal high-order methods on unstructured grids - I. time-domain solution of maxwell’s equations, J. comput. phys., 181, 186-221, (2002) · Zbl 1014.78016
[5] Baharav, Z.; Leviatan, Y., Wavelets in electromagnetics: the impedance matrix compression (IMC) method, Int. J. numer. model. el., 11, 69-84, (1998) · Zbl 0933.65122
[6] Krumpholz, M.; Katehi, L.P.B., MRTD: new time-domain schemes based on multiresolution analysis, IEEE trans. microwave theory tech., 44, 555-571, (1996)
[7] Tentzeris, E.M.; Robertson, R.L.; Harvey, J.F.; Katehi, L.P.B., Stability and dispersion analysis of battle – lemarie-based MRTD schemes, IEEE trans. microwave theory tech., 47, 1004-1013, (1999)
[8] Fujii, M.; Hoefer, W.J.R., Time-domain wavelet Galerkin modeling of two-dimensional electrically large dielectric waveguides, IEEE trans. microwave theory tech., 49, 886-892, (2001)
[9] Treurniet, J.R.; Simons, N.R.S.; Bridges, G.E., Integer lattice gas automata for computational electromagnetics, IEEE trans. microwave theory, 48, 6, 985-990, (2000)
[10] Andersen, L.S.; Volakis, J.L., Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics, IEEE trans. antenn. propag., 47, 112-120, (1999)
[11] Garcia-Castillo, L.E.; Salazar-Palma, M., Second-order nedelec tetrahedral element for computational electromagnetics, Int. J. numer. model. el., 13, 261-287, (2000) · Zbl 1071.78509
[12] Driscoll, T.A.; Fornberg, B., A block pseudospectral method for maxwell’s equations - I. one-dimensional case, J. comput. phys., 140, 47-65, (1998) · Zbl 0908.65090
[13] Song, J.M.; Lu, C.C.; Chew, W.C.; Lee, S.W., Fast illinois solver code (FISC), IEEE trans. antenn. propag., 40, 27-34, (1998)
[14] Honma, T., Advanced computational electromagnetics, (1995), IOS Press Ohmsha
[15] Tsuboi, H.; Sebestyen, I., Applied electromagnetics and computational technology, (1997), IOS Press Amsterdam
[16] Peterson, A.F.; Ray, S.L.; Mittra, R., Computational method for electromagnetics, (1998), Oxford University Press Oxford
[17] Umashankar, K.; Taflove, A., Computational electromagnetics, (1993), Artech House Boston
[18] Rao, S.M., Time domain electromagnetics, (1999), Academic Press San Diego, (Chapter 6)
[19] Lu, Y.Y., One-way large range step methods for Helmholtz waveguides, J. comput. phys., 152, 231-250, (1999) · Zbl 0944.65110
[20] Wei, G.W., Discrete singular convolution for the solution of the fokker – planck equations, J. chem. phys., 110, 8930-8942, (1999)
[21] Wei, G.W., A unified approach for solving the fokker – planck equation, J. phys. A, 33, 343-352, (2000)
[22] Wei, G.W., Wavelets generated by using discrete singular convolution kernels, J. phys. A, 33, 8577-8596, (2000) · Zbl 0961.42019
[23] Wei, G.W.; Zhao, Y.B.; Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports. I. theory and algorithm, Int. J. numer. methods engrg., 55, 913-946, (2002) · Zbl 1058.74643
[24] Wei, G.W., A new algorithm for solving some mechanical problems, Comput. methods appl. mech. engrg., 190, 2017-2030, (2001) · Zbl 1013.74081
[25] Wan, D.C.; Patnaik, B.S.V.; Wei, G.W., Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows, J. comput. phys., 180, 229-255, (2002) · Zbl 1130.76403
[26] Wei, G.W., Vibration analysis by discrete singular convolution, J. sound vibr., 244, 535-553, (2001) · Zbl 1237.74095
[27] Zhao, Y.B.; Wei, G.W.; Xiang, Y., Plate vibration under irregular internal supports, Int. J. solids struct., 39, 1361-1383, (2002) · Zbl 1090.74603
[28] G.W. Wei, A unified method for solving Maxwell’s equation, in: Proceedings of 1999 Asia-Pacific Microwave Conference, Singapore, 1999, pp. 562-565
[29] Fornberg, B., A practical guide to pseudospectral methods, (1996), Cambridge University Press Cambridge · Zbl 0844.65084
[30] Yang, S.Y.; Zhou, Y.C.; Wei, G.W., Comparison of the discrete singular convolution and Fourier pseudospectral methods for solving partial differential equations, Comput. phys. commun., 143, 113-135, (2002) · Zbl 0993.65112
[31] Liu, Q.H., The PSTD algorithm: a time-domain method requiring only two cells per wavelength, Microwave opt. techn. lett., 15, 158-165, (1997)
[32] Wei, G.W.; Zhang, D.S.; Kouri, D.J.; Hoffman, D.K., Lagrange distributed approximating functionals, Phys. rev. lett., 79, 775-779, (1997)
[33] Gottlieb, D.; Shu, C.W., On the Gibbs phenomenon and its resolution, SIAM rev., 39, 644-668, (1997) · Zbl 0885.42003
[34] Vichnevetsky, R.; Bowles, J.B., Fourier analysis of numerical approximations of hyperbolic equations, (1982), SIAM Philadelphia · Zbl 0495.65041
[35] G. Bao, G.W. Wei, and S. Zhao, Numerical solution of the Helmholtz equation with high wavenumbers, Int. J. Numer. Methods Engrg., 2003 (in press) · Zbl 1043.65132
[36] Ansoft Corporation, Getting started: an eigenmode problem, Available from http://www.ansoft.com/,2001
[37] Fernandez, F.A.; Lu, Y.L., Microwave and optical waveguide analysis by the finite element method, (1996), Research Studies Press Hertfordshire, UK
[38] Jurgens, H.M.; Zingg, D.W., Numerical solution of the time-domain Maxwell equations using high-accuracy finite-difference methods, SIAM J. sci. comput., 22, 1675-1696, (2000) · Zbl 1049.78025
[39] Zingg, D.W., Comparison of high-accuracy finite difference methods for linear wave propagation, SIAM J. sci. comput., 22, 476-502, (2000) · Zbl 0968.65061
[40] Zienkiewicz, O.C., Achievements and some unsolved problems of the finite element method, Int. J. numer. methods engrg., 47, 9-28, (2000) · Zbl 0962.76056
[41] Berenger, J.P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 185-200, (1994) · Zbl 0814.65129
[42] Wan, D.C.; Patnaik, B.S.V.; Wei, G.W., Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows, J. comput. phys., 180, 229-255, (2002) · Zbl 1130.76403
[43] Wei, G.W.; Gu, Y., Conjugated filter approach for solving burgers’ equation, J. comput. appl. math., 149, 439-456, (2002) · Zbl 1058.76054
[44] Turkel, E., High-order methods, (), (Chapter 2) · Zbl 1158.76386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.