zbMATH — the first resource for mathematics

Guaranteed nonlinear estimation using constraint propagation on sets. (English) Zbl 1023.93020
Using the ideas of interval constraint propagation, a new approach for the guaranteed estimation of the parameters and state vector of a nonlinear discrete-time model in a bounded-error context is presented. A set constraint satisfaction problem is presented in a more general context, generalizing to the vector case the interval constraint satisfaction problem. An illustrative example is presented.

93B30 System identification
93C10 Nonlinear systems in control theory
Full Text: DOI
[1] BENHAMOU, F., GOUALARD, G., GRANVILLIERS, L. and PUGET, J. F. Revising hull and box consistency. Proceedings of the International Conference on Logic Programming. Las Graces, NM, USA. pp.230–244.
[2] CLEARY J. C., Future Computing Systems 2 pp 125– (1987)
[3] DAVIS E., Artificial Intelligence 32 pp 281– (1987) · Zbl 0642.68176
[4] GELB A., Applied Optimal Estimation (1974)
[5] HYVÖNEN E., Artificial Intelligence 58 pp 71– (1992) · Zbl 0782.68102
[6] JAULIN L., Automatica 36 pp 1547– (2000) · Zbl 0959.93501
[7] JAULIN L., Reliable Computing 7 pp 231– (2001) · Zbl 0987.65011
[8] JAULIN L., Applied Interval Analysis (2001)
[9] JAULIN L., Automatica 29 pp 1053– (1993) · Zbl 0776.93001
[10] KALMAN R. E., Journal of Basic Engineering 82 pp 35– (1960)
[11] KANG, W. and KRENER, A. Nonlinear observer design: A backstepping approach. Proceedings of the 13th International Symposium on the Mathematical Theory of Networks and Systems. Padova, Italy. pp.245–248.
[12] KENDALL M. G., The Advanced Theory of Statistics, Vol. 2, Inference and Relationship, 2nd edition 2 (1967)
[13] KIEFFER, M. 1999. ”Estimation ensembliste par analyse par intervalles, application à la localisation d’un véhicule”. Orsay, France: Université Paris-Sud. PhD dissertation
[14] KIEFFER, M., JAULIN, L. and WALTER, E. Guaranteed recursive nonlinear state estimation using interval analysis. Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, FL, USA. pp.3966–3971. · Zbl 1006.93067
[15] KIEFFER, M., JAULIN, L., WALTER, E. and MEIZEL, D. Guaranteed mobile robot tracking using interval analysis. Proceedings of the MISC’99 Workshop on Applications of Interval Analysis to Systems and Control. Girona, Spain. pp.347–359. · Zbl 0988.93513
[16] LANDAU Y., Adaptive Control, The Model Reference Approach (1979) · Zbl 0475.93002
[17] LUENBERGER D., IEEE Transactions on Automatic Control 11 pp 190– (1966)
[18] MILANESE M., Bounding Approaches to System Identification (1996) · Zbl 0845.00024
[19] MILANESE M., Automatica 27 pp 403– (1991) · Zbl 0729.93074
[20] MONTANARI U., Artificial Intelligence 48 pp 143– (1991) · Zbl 1117.68495
[21] MOORE R. E., Methods and Applications of Interval Analysis (1979) · Zbl 0417.65022
[22] NORTON J. P., International Journal of Adaptive Control and Signal Processing 8 pp 1– (1994)
[23] NORTON J. P., International Journal of Adaptive Control and Signal Processing 9 pp 1– (1995)
[24] SORENSON H., IEEE Transactions on Automatic Control 28 pp 253– (1983)
[25] WALTER E., Mathematics and Computers in Simulation 32 pp 447– (1990)
[26] WALTZ D., The Psychology of Computer Vision pp 19– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.