zbMATH — the first resource for mathematics

The compositional inverse of a class of permutation polynomials over a finite field. (English) Zbl 1023.11061
Let \(q\) be a power of \(2\) and \(n\) be an odd positive integer. Denote the trace mapping from \({\mathbb F}_{q^n}\) to \({\mathbb F}_q\) by \(\text{Tr}(X) = \sum_{i=0}^{n-1}X^{q^i}\). Then as it has been shown in A. Blokhuis, R. Coulter, M. Henderson, and C. O’Keefe [Finite fields and applications V, Augsburg, 1999, 37-42 (2001; Zbl 1009.11064)] that the polynomial \[ f_\alpha(X) = X\operatorname {Tr}(X) + (\alpha+1)X^2 \] induces a permutation of \({\mathbb F}_{q^n}\) for any \(\alpha \in {\mathbb F}_q\setminus\{0,1\}\). The authors provide formulas describing a polynomial \(g_\alpha(X)\) which induces the inverse permutation.

11T06 Polynomials over finite fields
12E10 Special polynomials in general fields
Full Text: DOI
[1] DOI: 10.1006/ffta.1995.1020 · Zbl 0828.11070 · doi:10.1006/ffta.1995.1020
[2] DOI: 10.2307/2323626 · Zbl 0653.12010 · doi:10.2307/2323626
[3] DOI: 10.2307/2324822 · Zbl 0777.11054 · doi:10.2307/2324822
[4] Lidl, Dickson Polynomials 65 (1993)
[5] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.