Coulter, Robert S.; Henderson, Marie The compositional inverse of a class of permutation polynomials over a finite field. (English) Zbl 1023.11061 Bull. Aust. Math. Soc. 65, No. 3, 521-526 (2002). Let \(q\) be a power of \(2\) and \(n\) be an odd positive integer. Denote the trace mapping from \({\mathbb F}_{q^n}\) to \({\mathbb F}_q\) by \(\text{Tr}(X) = \sum_{i=0}^{n-1}X^{q^i}\). Then as it has been shown in A. Blokhuis, R. Coulter, M. Henderson, and C. O’Keefe [Finite fields and applications V, Augsburg, 1999, 37-42 (2001; Zbl 1009.11064)] that the polynomial \[ f_\alpha(X) = X\operatorname {Tr}(X) + (\alpha+1)X^2 \] induces a permutation of \({\mathbb F}_{q^n}\) for any \(\alpha \in {\mathbb F}_q\setminus\{0,1\}\). The authors provide formulas describing a polynomial \(g_\alpha(X)\) which induces the inverse permutation. Reviewer: Wilfried Meidl (Singapore) Cited in 11 Documents MSC: 11T06 Polynomials over finite fields 12E10 Special polynomials in general fields Keywords:permutation polynomials; polynomial composition; finite fields PDF BibTeX XML Cite \textit{R. S. Coulter} and \textit{M. Henderson}, Bull. Aust. Math. Soc. 65, No. 3, 521--526 (2002; Zbl 1023.11061) Full Text: DOI References: [1] DOI: 10.1006/ffta.1995.1020 · Zbl 0828.11070 · doi:10.1006/ffta.1995.1020 [2] DOI: 10.2307/2323626 · Zbl 0653.12010 · doi:10.2307/2323626 [3] DOI: 10.2307/2324822 · Zbl 0777.11054 · doi:10.2307/2324822 [4] Lidl, Dickson Polynomials 65 (1993) [5] DOI: 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.