×

zbMATH — the first resource for mathematics

Modelling crack growth by level sets in the extended finite element method. (English) Zbl 1022.74049
From the summary: We describe an algorithm which couples the level set method with extended finite element method to model crack growth. The level set method is used to represent the crack location, including the location of crack tips. The extended finite element method is used to compute stress and displacement fields necessary for determining the rate of crack growth. This combined method requires no remeshing as the crack progresses, making the algorithm very efficient.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Moës, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[2] Belytschko, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[3] Belytschko, International Journal for Numerical Methods in Engineering 50 pp 993– (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[4] Osher, Journal of Computational Physics 79 pp 12– (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[5] Smereka, Physica D 138 pp 282– (2000) · Zbl 0957.80002 · doi:10.1016/S0167-2789(99)00216-X
[6] Oliver, Computational Mechanics 17 pp 49– (1995) · doi:10.1007/BF00356478
[7] Oliver, International Journal for Numerical Methods in Engineering 39 pp 3601– (1996) · doi:10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
[8] Armero, Proceedings of Engineering Mechanics 1 pp 136– (1996)
[9] Duarte, Computer Methods in Applied Mechanics and Engineering 190 pp 2227– (2001) · Zbl 1047.74056 · doi:10.1016/S0045-7825(00)00233-4
[10] Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[11] Sukumar, Computer Methods in Applied Mechanics and Engineering (2001)
[12] Sukumar, Journal of Computational Physics (2001)
[13] Chopp, Journal of Computational Physics 106 pp 77– (1993) · Zbl 0786.65015 · doi:10.1006/jcph.1993.1092
[14] Moran, Engineering Fracture Mechanics 27 pp 615– (1987) · doi:10.1016/0013-7944(87)90155-X
[15] Morphological aspects of fatigue crack propagation. Part II?effects of stress biaxiality and welding residual stresses. Technical Report. Department of Naval Architecture and Ocean Engineering, Yokohama National University, Japan, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.