zbMATH — the first resource for mathematics

A hybrid particle level set method for improved interface capturing. (English) Zbl 1021.76044
Summary: We propose a numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume-of-fluid methods in the conservation of mass, and with purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.

76M28 Particle methods and lattice-gas methods
Full Text: DOI
[1] Adalsteinsson, D.; Sethian, J., A fast level set method for propagating interfaces, J. comput. phys., 118, 269, (1995) · Zbl 0823.65137
[2] A. Amsden, Numerical Calculation of Surface Waves: A Modified ZUNI Code with Surface Particles and Partial Cells, Technical Report LA-5146, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
[3] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, 257, (1989) · Zbl 0681.76030
[4] Caiden, R.; Fedkiw, R.; Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. comput. phys., 166, 1, (2001) · Zbl 0990.76065
[5] Cerne, G.; Petelin, S.; Tiselj, I., Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow, J. comput. phys., 171, 776, (2001) · Zbl 1065.76619
[6] Chen, S.; Johnson, D.; Raad, P., Velocity boundary conditions for the simulation of free surface fluid flow, J. comput. phys., 116, 262, (1995) · Zbl 0823.76051
[7] Chen, S.; Johnson, D.; Raad, P.; Fadda, D., The surface marker and micro cell method, Int. J. numer. meth. fluids, 25, 749, (1997) · Zbl 0896.76064
[8] D. Enright, S. Marschner, and, R. Fedkiw, Animation and rendering of complex water surfaces, in, SIGGRAPH’02, (in press).
[9] Foster, N.; Fedkiw, R., Practical animation of liquids, Siggraph 01, 15, (2001)
[10] Glassner, A., principles of digital image synthesis, (1995), Morgan Kaufmann San Francisco
[11] F. Harlow, J. Shannon, and, J. Welch, THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Technical Report LA-3425, Los Alamos Scientific Laboratory, Los Alamos, NM, 1965.
[12] Harlow, F.; Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[13] Helmsen, J., A comparison of three-dimensional photolithography development methods, (1994), U.C. Berkeley Berkeley
[14] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[15] Jiang, G.-S.; Peng, D., Weighted ENO schemes for hamilton – jacobi equations, SIAM J. sci. comput., 21, 2126, (2000) · Zbl 0957.35014
[16] Kang, M.; Fedkiw, R.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. sci. comput., 15, 323, (2000) · Zbl 1049.76046
[17] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. comput. phys., 113, 134, (1994) · Zbl 0809.76064
[18] Lapenta, G.; Brackbill, J., Dynamic and selective control of the number of particles in kinetic plama simulations, J. comput. phys., 115, 213, (1994) · Zbl 0811.76060
[19] LeVeque, R., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627, (1996) · Zbl 0852.76057
[20] Osher, S.; Fedkiw, R., Level set methods: an overview and some recent results, J. comput. phys., 169, 463, (2001) · Zbl 0988.65093
[21] Osher, S.; Fedkiw, R., the level set method and dynamic implicit surfaces, (2002), Springer-Verlag New York
[22] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on hamiliton – jacobi formulations, J. comput. phys., 79, 12, (1988) · Zbl 0659.65132
[23] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.-K.; Kang, M., A PDE-based fast local level set method, J. comput. phys., 155, 410, (1999) · Zbl 0964.76069
[24] Puckett, E.; Almgren, A.; Bell, J.; Marcus, D.; Rider, W., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. comput. phys., 130, 269, (1997) · Zbl 0872.76065
[25] Raad, P.; Chen, S.; Johnson, D., The introduction of micro cells to treat pressure in free surface fluid flow problems, J. fluids eng., 117, 683, (1995)
[26] W. Rider, and, D. Kothe, A marker particle method for interface tracking, in, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, edited by, H. Dwyer, 1995, p, 976.
[27] Rider, W.; Kothe, D., Stretching and tearing interface tracking methods, 12th AIAA CFD conference, (1995)
[28] Rider, W.; Kothe, D., Reconstructing volume tracking, J. comput. phys., 141, 112, (1998) · Zbl 0933.76069
[29] Sethian, J., Curvature and the evolution of fronts, Comm. math. phys., 101, 487, (1985) · Zbl 0619.76087
[30] J. Sethian, Numerical methods for propagating fronts, in, Variational Methods for Free Surface Interfaces, edited by, P. Concus and R. Finn, Springer-Verlag, Berlin/New York, 1987. · Zbl 0618.65128
[31] Sethian, J., A fast marching level set method for monotonically advancing fronts, Proc. natl. acad. sci., 93, 1591, (1996) · Zbl 0852.65055
[32] Sethian, J., Fast marching methods, SIAM rev., 41, 199, (1999) · Zbl 0926.65106
[33] Sethian, J., level set methods and fast marching methods, (1999), Cambridge Univ. Press Cambridge · Zbl 0929.65066
[34] Sethian, J., Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. comput. phys., 169, 503, (2001) · Zbl 0988.65095
[35] Shu, C.; Osher, S., Efficient implementation of essentially nonoscillatory shock capturing schemes, J. comput. phys., 77, 439, (1988) · Zbl 0653.65072
[36] Smolarkiewicz, P., The multi-dimensional crowley advection scheme, Month. weather rev., 110, 1968, (1982)
[37] Sussmam, M.; Puckett, E., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. comput. phys., 162, 301, (2000) · Zbl 0977.76071
[38] Sussman, M.; Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, J. comput. phys., 148, 81, (1999) · Zbl 0930.76068
[39] Sussman, M.; Fatemi, E., An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. sci. comput., 20, 1165, (1999) · Zbl 0958.76070
[40] Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S., An improved level set method for incompressible two-phase flows, Comput. fluids, 27, 663, (1998) · Zbl 0967.76078
[41] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[42] Torres, D.; Brackbill, J., The point-set method: front tracking without connectivity, J. comput. phys., 165, 620, (2000) · Zbl 0998.76070
[43] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. comput. phys., 169, 708, (2001) · Zbl 1047.76574
[44] Unverdi, S.-O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[45] Williams, M.; Kothe, D.; Puckett, E., Approximating interfacial topologies with applications for interface tracking algorithms, 37th AIAA aerospace sciences meeting, (1999)
[46] M. Williams, D. Kothe, and, E. Puckett, Convergence and accuracy of kernal-based continuum surface tension models, in, Fluid Dynamics at Interfaces, edited by, W. Shyy, Cambridge Univ. Press, Cambridge, UK, 1999, p, 347. · Zbl 0979.76014
[47] Zalesak, S., Fully multidimensional flux-corrected transport algorithms for fluids, J. comput. phys., 31, 335, (1979) · Zbl 0416.76002
[48] Zhang, Y.; Yeo, K.; Khoo, B.; Wang, C., 3D jet impact and toroidal bubbles, J. comput. phys., 166, 336, (2001) · Zbl 1030.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.