×

zbMATH — the first resource for mathematics

Is network traffic approximated by stable Lévy motion or fractional Brownian motion? (English) Zbl 1021.60076
From the authors’ abstract: Cumulative broadband network traffic is often thought to be well modeled by fractional Brownian motion (FBM). However, some traffic measurements do not show an agreement with the Gaussian marginal distribution assumption. The authors show that if connection rates are modest relative to heavy tailed connection length distribution tails, then stable Lévy motion is a sensible approximation to cumulative traffic over a time period. If connection rates are large relative to heavy tailed connection length distribution tails, then FBM is the appropriate approximation. The results are framed as limit theorems for a sequence of cumulative input processes whose connection rates are varying in such a way as to remove or induce long range dependence.
Reviewer: V.Schmidt (Ulm)

MSC:
60K25 Queueing theory (aspects of probability theory)
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ANANTHARAM, V. (1995). On the sojourn time of sessions at an atm buffer with long-range dependent input traffic. In Proceedings of the 34th IEEE Conference on Decision and Control 13-15. IEEE, New York.
[2] ARLITT, M. and WILLIAMSON, C. (1996). Web server workload characterization: the search for invariants. Master’s thesis, Univ. Saskatchewan.
[3] BERAN, J. (1994). Statistical Methods for Long Memory Processes. Chapman and Hall, London. · Zbl 0869.60045
[4] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[5] BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001
[6] CLINE, D. B. H. and HSING, T. (1991). Large deviation probabilities for sums and maxima of random variables with heavy or subexponential tails. Preprint, Texas A&M Univ.
[7] MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN
[8] COX, D. R. (1984). Long-range dependence: a review. In Statistics: An Appraisal (H. A. David and H. T. David, eds.) 55-74. Iowa State Univ. Press.
[9] CROVELLA, M. and BESTAVROS, A. (1995). Explaining world wide web traffic self-similarity. Preprint. Available as TR-95-015 from crovella,bestcs.bu.edu.
[10] CROVELLA, M. and BESTAVROS, A. (1996). Self-similarity in world wide web traffic: evidence and possible causes. Performance Evaluation Rev. 24 160-169.
[11] CROVELLA, M. and BESTAVROS, A. (1997). Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Networking 5 835-846.
[12] CROVELLA, M., BESTAVROS, A. and TAQQU, M. (1996). Heavy-tailed probability distributions in the world wide web. · Zbl 0945.62130
[13] CROVELLA, M. KIM, G. and PARK, K. (1996). On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proceedings of the Fourth International Conference on Network Protocols 171-180.
[14] CROVELLA, M., PARK, K. and KIM, G. (1997). On the effect of traffic self-similarity on network performance. In Proceedings of the SPIE International Conference on Performance and Control of Network Systems. SPIE, Billingham Washington.
[15] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York. · Zbl 0219.60003
[16] GUERIN, C. A., NYBERG, H., PERRIN, O. RESNICK, S. ROOTZÉN, H. and STARI CA, C.
[17] . Empirical testing of the infinite source Poisson data traffic model. Technical Report 1257, School of ORIE, Cornell Univ. Available at www.orie.cornell.edu. URL: · Zbl 1048.62080 · www.orie.cornell.edu.
[18] GUT, A. (1988). Stopped Random Walks: Limit Theorems and Applications. Springer, New York. · Zbl 0634.60061
[19] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1997). Patterns of buffer overflow in a class of queues with long memory in the input stream. Ann. Appl. Probab. 7 1021-1057. · Zbl 0905.60070 · doi:10.1214/aoap/1043862423
[20] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1998). Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. 23 145- 165. JSTOR: · Zbl 0981.60092 · doi:10.1287/moor.23.1.145 · links.jstor.org
[21] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1999). How system performance is affected by the interplay of averages in a fluid queue with long range dependence induced by heavy tails. Ann. Appl. Probab. 9 352-375. · Zbl 1059.60505 · doi:10.1214/aoap/1029962746
[22] JELENKOVI Ć, P. R. and LAZAR, A. (1999). Asymptotic results for multiplexing subexponential on-off processes. Adv. Appl. Probab. 31 394-421. · Zbl 0952.60098 · doi:10.1239/aap/1029955141
[23] JELENKOVI Ć, P. R. and LAZAR, A. (1996). A network multiplexer with multiple time scale and subexponential arrivals. Stochastic Networks. Lecture Notes in Statist. 117 215-235. Springer, New York. · Zbl 0860.60069
[24] KAJ, I. (1999). Convergence of scaled renewal processes o fractional brownian motion. Preprint, Dept. Mathematics, Uppsala Univ.
[25] KLÜPPELBERG, C. and MIKOSCH, T. (1995). Explosive Poisson shot noise processes with applications to risk reserves. Bernoulli 1 125-148. · Zbl 0842.60030 · doi:10.2307/3318683
[26] KONSTANTOPOULOS, T. and LIN, S.-J. (1998). Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 215-243. · Zbl 0908.90131 · doi:10.1023/A:1019190821105
[27] KURTZ, T. (1996). Limit theorems for workload input models. In Stochastic Networks: Theory and Applications (S. Zachary F.P. Kelly and I. Ziedins, eds.) Clarendon Press, Oxford. · Zbl 0855.60089
[28] LELAND, W. E., TAQQU, M. S., WILLINGER, W. and WILSON, D. V. (1993). On the selfsimilar nature of Ethernet traffic. ACM/SIGCOMM Computer Comm. Rev. 23 183-193.
[29] LELAND, W. E., TAQQU, M. S., WILLINGER, W. and WILSON, D. V. (1994). On the selfsimilar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking 2 1- 15.
[30] LEVY, J. and TAQQU, M. (2000). Renewal reward processes with heavy tailed interrenewal times and havy tailed rewards. Bernoulli 6 26-44. · Zbl 0954.60071 · doi:10.2307/3318631
[31] LIKHANOV, N., TSYBAKOV, B. and GEORGANAS, N. D. (1995). Analysis of an atm buffer with self-similar (”fractal”) input traffic. In Proceedings of the 14th Annual IEEE INFOCOM 2 985-992. IEEE, New York.
[32] MIKOSCH, T. and STEGEMAN, A. (1999). The interplay between heavy tails and rates in selfsimilar network traffic. Technical report, Univ. Groningen, Dept. Mathematics. Available at www.cs.rug.nl/ eke/iwi/preprints/. URL: · www.cs.rug.nl
[33] NOLAN, J. P. (1998). Maximum likelihood estimation and diagnostics for stable processes. Available at http://www.cas.american.edu/ jpnolan/stable.html. URL: · www.cas.american.edu
[34] PAXTON, V. and FLOYD, S. (1995). Wide-area traffic: The failure of poisson modeling. IEEE/ACM Trans. Networking 3 226-244.
[35] PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, New York. · Zbl 0322.60043
[36] PETROV, V. V. (1995). Limit Theorems of Probability Theory. Oxford Univ. Press. · Zbl 0826.60001
[37] RESNICK, S. and SAMORODNITSKY, G. (1999). Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues. Queueing Systems 33 43-71. · Zbl 0997.60111 · doi:10.1023/A:1019163826499
[38] RESNICK, S. and VAN DEN BERG, E. (2000). A test for nonlinearity of time series with infinite variance. Extremes 3 145-172. · Zbl 0971.62049 · doi:10.1023/A:1009996916066
[39] RESNICK, S. and VAN DEN BERG, E. (2000). Weak convergence of high-speed network traffic models. J. Appl. Probab. 37 575-597. · Zbl 1028.90008 · doi:10.1239/jap/1014842560
[40] RESNICK, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York. · Zbl 0633.60001
[41] RESNICK, S. I. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston. · Zbl 0762.60002
[42] RESNICK, S. I. (1998). A Probability Path. Birkhäuser, Boston. · Zbl 0944.60002
[43] RESNICK, S. I. and ROOTZÉN, H. (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10 753-778. · Zbl 1083.60521 · doi:10.1214/aoap/1019487509 · euclid:aoap/1019487509
[44] SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York. · Zbl 0925.60027
[45] STEGEMAN, A. (1998). Modeling traffic in high-speed networks by on/off models. Master’s thesis, Dept. Mathematics, Univ. Groningen.
[46] TAQQU, M. and LEVY, J. (1986). Using renewal processes to generate long-range dependence and high variability. Dependence in Probability and Statistics (E. Eberlein and M. Taqqu, eds.) 73-89. Birkhäuser, Boston. · Zbl 0601.60085
[47] TAQQU, M., WILLINGER, W. and SHERMAN, R. (1997). Proof of a fundamental result in self-similar traffic modeling. Computer Comm. Rev. 27 5-23.
[48] TSOUKATOS, K. P. and MAKOWSKI, A. (1997). Heavy traffic analysis for a multiplexer driven by M/G/ input processes. In Proceedings of the 15th International Teletraffic Congress, Washington DC (V. Ramaswami and P. E. Wirth, eds.) 497-506.
[49] WHITT, W. (1999). Limits for cumulative input processes to queues. Preprint, AT&T Labs, Murray Hill, NJ. · Zbl 0979.60089 · doi:10.1017/S0269964800142019
[50] WHITT, W. (1999). On the Skorohod M-topologies. Preprint, AT&T Labs, Murry Hill, NJ. · Zbl 0788.60116 · doi:10.1007/BF02024659
[51] WHITT, W. (1999). The reflection map is Lipschitz with appropriate Skorohod M-metrics. Preprint, AT&T Labs, Murray Hill, NJ.
[52] WILLINGER, W. TAQQU, M. S., SHERMAN, R. and WILSON, D. (1995). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level. Comput. Comm. Rev. 25 100-113.
[53] MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN ITHACA, NEW YORK 14853 E-MAIL: sid@orie.cornell.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.