×

Boundary and entropy of space homogeneous Markov chains. (English) Zbl 1021.60056

From the authors’ abstract: We study the Poisson boundary (= representation of bounded harmonic functions) of Markov operators on discrete state spaces that are invariant under the action of a transitive group of permutations. This automorphism group is locally compact, but not necessarily discrete or unimodular. The main technical tool is entropy theory, which we develop along the same lines as in the case of random walks on countable groups […]. The implementation is different, and exploits discreteness of the state space on the one hand, and the path space of the induced random walk on the nondiscrete group on the other. Various new examples are given as applications, including a description of the Poisson boundary for random walks on vertex-transitive graphs with infinitely many ends, and on Diestel-Leader graphs.

MSC:

60J50 Boundary theory for Markov processes
60G50 Sums of independent random variables; random walks
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] AVEZ, A. (1972). Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A-B 275 1363- 1366. · Zbl 0252.94013
[2] BENJAMINI, I., LYONS, R., PERES, Y. and SCHRAMM, O. (1999). Group-invariant percolation on graphs. Geom. Funct. Anal. 9 29-66. · Zbl 0924.43002 · doi:10.1007/s000390050080
[3] BERTACCHI, D. (2001). Random walks on Diestel-Leader graphs. Abh. Math. Sem. Univ. Hamburg 71 205-224. · Zbl 0992.60052 · doi:10.1007/BF02941472
[4] BLOOM, W. R. and HEYER, H. (1995). Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter, Berlin. · Zbl 0828.43005
[5] CARNE, T. K. (1985). A transmutation formula for Markov chains. Bull. Sci. Math. 109 399- 405. · Zbl 0584.60078
[6] CARTWRIGHT, D. I., KAIMANOVICH, V. A. and WOESS, W. (1994). Random walks on the affine group of a homogeneous tree. Ann. Inst. Fourier (Grenoble) 44 1243-1288. · Zbl 0809.60010 · doi:10.5802/aif.1433
[7] COORNAERT, M., DELZANT, T. and PAPADOPOULOS, A. (1990). Géométrie et Théorie des Groupes: les Groupes Hyperboliques de Gromov. Lecture Notes in Math. 1441. Springer, Berlin. · Zbl 0727.20018 · doi:10.1007/BFb0084913
[8] DERRIENNIC, Y. (1976). Lois ”zéro ou deux” pour les processus de Markov, applications aux marches aléatoires. Ann. Inst. H. Poincaré Sec. B 12 111-129. · Zbl 0353.60075
[9] DERRIENNIC, Y. (1980). Quelques applications du théorème ergodique sous-additif. Astérisque 74 183-201. · Zbl 0446.60059
[10] DERRIENNIC, Y. (1986). Entropie, théorèmes limites et marches aléatoires. Lecture Notes in Math. 1210 241-284. Springer, Berlin. · Zbl 0612.60005 · doi:10.1007/BFb0077188
[11] DICKS, W. and DUNWOODY, M. J. (1989). Groups Acting on Graphs. Cambridge Univ. Press, Cambridge. · Zbl 0665.20001
[12] DODZIUK, J. (1984). Difference equations, isoperimetric inequality, and transience of certain random walks. Trans. Amer. Math. Soc. 284 787-794. · Zbl 0512.39001 · doi:10.2307/1999107
[13] DUNWOODY, M. J. (1982). Cutting up graphs. Combinatorica 2 15-23. · Zbl 0504.05035 · doi:10.1007/BF02579278
[14] DYNKIN, E. B. (1982). Markov Processes and Related Problems of Analysis. Cambridge Univ. Press. · Zbl 0498.60067
[15] FREUDENTHAL, H. (1944). Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv. 17 1-38. · Zbl 0060.40007 · doi:10.1007/BF02566233
[16] FURSTENBERG, H. (1973). Boundary theory and stochastic processes on homogeneous spaces. Proc. Sympos. Pure Math. 26 193-229. · Zbl 0289.22011
[17] GHYS, E. and DE LA HARPE, P. (eds.) (1990). Sur les Groupes Hyperboliques d’après Mikhael Gromov. Birkhäuser, Boston. · Zbl 0731.20025
[18] GRIGORCHUK, R. I. and DE LA HARPE, P. (1997). On problems related to growth, entropy and spectrum in group theory. J. Dynam. Control Systems 3 55-89. · Zbl 0949.20033 · doi:10.1007/BF02471762
[19] GROMOV, M. (1987). Hyperbolic groups. In Essays in Group Theory (S. M. Gersten, ed.) 75- 263. Springer, New York. · Zbl 0634.20015
[20] IMRICH, W. and SEIFTER, N. (1991). A survey on graphs with polynomial growth. Discrete Math. 95 101-117. · Zbl 0761.05048 · doi:10.1016/0012-365X(91)90332-V
[21] JEWETT, R. I. (1975). Spaces with an abstract convolution of measures. Adv. Math. 18 1-101. · Zbl 0325.42017 · doi:10.1016/0001-8708(75)90002-X
[22] KAIMANOVICH, V. A. (1988). Brownian motion on foliations: entropy, invariant measures, mixing. Funct. Anal. Appl. 22 326-328. · Zbl 0675.58039 · doi:10.1007/BF01077429
[23] KAIMANOVICH, V. A. (1991). Poisson boundaries of random walks on discrete solvable groups. In Proceedings of Conference on Probability Measures on Groups (H. Heyer, ed.) 205-238. Plenum, New York. · Zbl 0823.60006
[24] KAIMANOVICH, V. A. (1992). Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy. In Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory (M. A. Picardello, ed.) 145-180. Plenum, New York.
[25] KAIMANOVICH, V. A. (1995). The Poisson boundary of covering Markov operators. Israel J. Math. 89 77-134. · Zbl 0843.43001 · doi:10.1007/BF02808195
[26] KAIMANOVICH, V. A. (1996). Boundaries of invariant Markov operators: the identification problem. In Ergodic Theory of Zd Actions (M. Pollicott and K. Schmidt, eds.) 127-176. Cambridge Univ. Press. · Zbl 0848.60073
[27] KAIMANOVICH, V. A. (1998). Hausdorff dimension of the harmonic measure on trees. Ergodic Theory Dynam. Systems 18 631-660. · Zbl 0960.60047 · doi:10.1017/S0143385798108180
[28] KAIMANOVICH, V. A. (2000). The Poisson formula for groups with hyperbolic properties. Ann. Math. 152 659-692. JSTOR: · Zbl 0984.60088 · doi:10.2307/2661351
[29] KAIMANOVICH, V. A. and VERSHIK, A. M. (1983). Random walks on discrete groups: boundary and entropy. Ann. Probab. 11 457-490. · Zbl 0641.60009 · doi:10.1214/aop/1176993497
[30] KAIMANOVICH, V. A. and WOESS, W. (1995). Construction of discrete, non-unimodular hypergroups. In Probability Measures on Groups and Related Structures, XI (H. Heyer, ed.) 196-209. World Scientific, River Edge, NJ. · Zbl 0908.43004
[31] KINGMAN, J. F. C. (1968). The ergodic theory of subadditive processes. J. Roy. Statist. Soc. Ser. B 30 499-510. JSTOR: · Zbl 0182.22802
[32] LEDRAPPIER, F. (1985). Poisson boundaries of discrete groups of matrices. Israel J. Math. 50 319-336. · Zbl 0574.60012 · doi:10.1007/BF02759763
[33] LEDRAPPIER, F. (1992). Sharp estimates for the entropy. In Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory (M. A. Picardello, ed.) 281-288. Plenum, New York.
[34] MÖLLER, R. G. (1992). Ends of graphs II. Math. Proc. Cambridge Philos. Soc. 111 455-460. · Zbl 0755.05077 · doi:10.1017/S0305004100075551
[35] PAVONE, M. (1989). Boundaries of discrete groups, Toeplitz operators and extensions of the reduced C -algebra. Ph.D. dissertation, Univ. California, Berkeley.
[36] ROKHLIN, V. A. (1996). Lectures on the entropy theory of measure preserving transformations. Russian Math. Surveys 22 1-52. · Zbl 0174.45501 · doi:10.1070/RM1967v022n05ABEH001224
[37] SALOFF-COSTE, L. and WOESS, W. (1996). Computing norms of group-invariant transition operators. Combin. Probab. Comput. 4 419-442. · Zbl 0865.60006 · doi:10.1017/S0963548300001942
[38] SALOFF-COSTE, L. and WOESS, W. (1997). Transition operators, groups, norms, and spectral radii. Pacific J. Math. 180 333-367. · Zbl 0899.60005 · doi:10.2140/pjm.1997.180.333
[39] SCHLICHTING, G. (1979). Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen. Invent. Math. 55 97-106. · Zbl 0426.22007 · doi:10.1007/BF01390083
[40] SOARDI, P. M. and WOESS, W. (1990). Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math.205 471-486. · Zbl 0693.43001 · doi:10.1007/BF02571256
[41] THOMASSEN, C. and WOESS, W. (1993). Vertex-transitive graphs and accessibility. J. Combin. Theory Ser. B 58 248-268. · Zbl 0793.05073 · doi:10.1006/jctb.1993.1042
[42] TROFIMOV, V. I. (1985). Graphs with polynomial growth. Math. USSR Sb. 51 405-417. · Zbl 0565.05035 · doi:10.1070/SM1985v051n02ABEH002866
[43] TROFIMOV, V. I. (1985). Automorphism groups of graphs as topological groups. Math. Notes 38 717-720. · Zbl 0596.05033 · doi:10.1007/BF01163706
[44] VAROPOULOS, N. TH. (1985). Long range estimates for Markov chains. Bull. Sci. Math. 109 225-252. · Zbl 0583.60063
[45] WOESS, W. (1989). Amenable group actions on infinite graphs. Math. Ann. 284 251-265. · Zbl 0648.43002 · doi:10.1007/BF01442875
[46] WOESS, W. (1989). Boundaries of random walks on graphs and groups with infinitely many ends. Israel J. Math. 68 271-301. · Zbl 0723.60009 · doi:10.1007/BF02764985
[47] WOESS, W. (1993). Fixed sets and free subgroups of groups acting on metric spaces. Math.214 425-440. · Zbl 0892.54022 · doi:10.1007/BF02572415
[48] WOESS, W. (1994). Topological groups and recurrence of quasi transitive graphs. Rend. Sem. Mat. Fis. Milano 64 185-213. · Zbl 0852.60086 · doi:10.1007/BF02925198
[49] WOESS, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press. · Zbl 0951.60002
[50] IRMAR, UNIVERSITÉ DE RENNES-1 35042 RENNES FRANCE E-MAIL: kaimanov@univ-rennes1.fr INSTITUT FÜR MATHEMATIK TECHNISCHE UNIVERSITÄT GRAZ 8010 GRAZ AUSTRIA E-MAIL: woess@tugraz.at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.