zbMATH — the first resource for mathematics

Convex cocompact subgroups of mapping class groups. (English) Zbl 1021.20034
We recall first a classical definition. Let \(H^n\) denote the \(n\)-dimensional hyperbolic space. A ‘convex cocompact subgroup’ of \(\text{Isom}(H^n)\) is a discrete subgroup \(G\) of \(\text{Isom}(H^n)\) which acts cocompactly on the convex hull in \(H^n\) of its limit set \(\Lambda_G\). A ‘Schottky group’ is a convex cocompact subgroup of \(\text{Isom}(H^n)\) which is free. The study of convex cocompact groups of isometries and of Schottky groups is an important subject in three-dimensional hyperbolic geometry. Let \(S\) be a closed oriented surface of genus \(\geq 2\). In the paper under review, the authors develop an “analogous” theory of convex cocompact subgroups and Schottky subgroups for the mapping class group \(MCG\) of \(S\), in terms of the action of \(MCG\) on the Teichmüller space \({\mathcal T}\) of \(S\). Here, Teichmüller space is equipped with its Thurston boundary \(\mathcal{PMF}\). The first result that the authors give is a theorem which gives several characterizations of convex cocompact subgroups:
Theorem 1: Let \(G\) be a finitely generated subgroup of \(MCG\). Then, the following are equivalent: – Some orbit of \(G\) is quasiconvex in \(\mathcal T\). – Every orbit of \(G\) is quasiconvex in \(\mathcal T\). – \(G\) is word hyperbolic, and there is a \(G\)-equivariant embedding \(\partial f\colon\partial G\to\mathcal{PMF}\) with image \(\Lambda_G\) such that the following two properties hold: (i) Any two distinct points \(\xi\) and \(\eta\in\Lambda_G\) are the endpoints of a unique geodesic \([\xi,\eta]\) in \(\mathcal T\) and (ii) If \(\text{WH}_G\) is the “weak hull” of \(G\), that is, the union of geodesics in \(\mathcal T\) with distinct endpoints in \(\Lambda_G\), then the action of \(G\) on \(\text{WH}_G\) is cocompact, and if \(f\colon G\to\text{WH}_G\) is any \(G\)-equivariant map, then \(f\) is a quasi-isometry and the following map is continuous: \[ {\overline f}=f\cup\partial f\colon G\cup\partial G\to{\overline{\mathcal T}}={\mathcal T}\cup\mathcal{PMF}. \] A group \(G\) satisfying one of the equivalent three conditions of Theorem 1 is said to be a ‘convex cocompact subgroup’ of \(MCG\). The authors show that such a group satisfies several properties which are analogous to properties of convex cocompact subgroups of \(\text{Isom}(H^n)\). For instance, every infinite order element of a convex cocompact subgroup of \(MCG\) is pseudo-Anosov. The limit set \(\Lambda_G\) is the smallest nontrivial set of \(\overline{\mathcal T}\) which is invariant under the action of \(G\), and the action of \(G\) on \({\mathcal{PMF}}\setminus\Lambda_G\) is properly discontinuous. The authors define then a ‘Schottky subgroup’ of \(MCG\) to be a convex cocompact group which is free of finite rank. They show that Schottky subgroups exists in abundance. They prove that if \(\phi_1,\dots,\phi_n\) are pseudo-Anosov elements of \(MCG\) whose axes have pairwise disjoint endpoints in \(\mathcal{PMF}\), then for all sufficiently large positive integers \(a_1,\dots,a_n\), the mapping classes \(\phi_1^{a_1},\dots,\phi_n^{a_n}\) freely generate a Schottky subgroup of \(MCG\). The authors apply this theory to relate convex cocompactness of subgroups of \(MCG\) with the large scale geometry of extensions of surface groups by subgroups of \(MCG\). In particular, they prove that if \(G\) is a subgroup of \(MCG\) defining an extension \(1\to\pi_1(S)\to\Gamma_G\to G\to 1\) and if \(G\) is a word hyperbolic group, then \(G\) is a convex cocompact subgroup of \(MCG\). In the case where \(G\) is a Schottky group, then the converse is also true, that is, a semidirect product of \(\pi_1(S)\) by a free group \(G\) is word hyperbolic if and only if \(G\) is a Schottky subgroup of \(MCG\). The paper contains several interesting open questions in that theory.

20F67 Hyperbolic groups and nonpositively curved groups
20F65 Geometric group theory
57M07 Topological methods in group theory
57S25 Groups acting on specific manifolds
20F05 Generators, relations, and presentations of groups
20E07 Subgroup theorems; subgroup growth
Full Text: DOI EMIS EuDML arXiv
[1] W Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980) · Zbl 0452.32015
[2] G N Arzhantseva, On quasiconvex subgroups of word hyperbolic groups, Geom. Dedicata 87 (2001) 191 · Zbl 0994.20036 · doi:10.1023/A:1012040207144
[3] R Baer, Isotopien von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math. 159 (1928) 101 · JFM 54.0602.05
[4] L Bers, Fiber spaces over Teichmüller spaces, Acta. Math. 130 (1973) 89 · Zbl 0249.32014 · doi:10.1007/BF02392263
[5] L Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978) 73 · Zbl 0389.30018 · doi:10.1007/BF02545743
[6] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 · Zbl 0724.57029 · euclid:jdg/1214447806
[7] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
[8] J S Birman, A Lubotzky, J McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107 · Zbl 0551.57004 · doi:10.1215/S0012-7094-83-05046-9
[9] N Brady, Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. London Math. Soc. \((2)\) 60 (1999) 461 · Zbl 0940.20048 · doi:10.1112/S0024610799007644
[10] J Brock, B Farb, Curvature and rank of Teichmüller space, Amer. J. Math. 128 (2006) 1 · Zbl 1092.32008 · doi:10.1353/ajm.2006.0003
[11] R D Canary, Covering theorems for hyperbolic 3-manifolds, Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA (1994) 21 · Zbl 0849.57014
[12] J W Cannon, The theory of negatively curved spaces and groups, Oxford Sci. Publ., Oxford Univ. Press (1991) 315 · Zbl 0764.57002
[13] D B A Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966) 83 · Zbl 0136.44605 · doi:10.1007/BF02392203
[14] B Farb, A Lubotzky, Y Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001) 581 · Zbl 1025.20023 · doi:10.1215/S0012-7094-01-10636-4
[15] B Farb, L Mosher, The geometry of surface-by-free groups, Geom. Funct. Anal. 12 (2002) 915 · Zbl 1048.20026 · doi:10.1007/PL00012650
[16] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284 · Zbl 0406.00016
[17] F P Gardiner, H Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991) 209 · Zbl 0702.32019
[18] S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031 · Zbl 0933.20026 · doi:10.1016/S0040-9383(97)00070-0
[19] G González-Díez, W J Harvey, Surface groups inside mapping class groups, Topology 38 (1999) 57 · Zbl 0927.57013 · doi:10.1016/S0040-9383(97)00104-3
[20] A Haefliger, Complexes of groups and orbihedra, World Sci. Publ., River Edge, NJ (1991) 504 · Zbl 0858.57013
[21] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221 · Zbl 0415.30038 · doi:10.1007/BF02395062
[22] Y Imayoshi, M Taniguchi, An introduction to Teichmüller spaces, Springer (1992) · Zbl 0754.30001
[23] N V Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society (1992) · Zbl 0776.57001
[24] N V Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Travaux en Cours 56, Hermann (1997) 113 · Zbl 0941.30027
[25] M Kapovich, On normal subgroups in the fundamental groups of complex surfaces, · arxiv:math.GT/9808085
[26] S P Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980) 23 · Zbl 0439.30012 · doi:10.1016/0040-9383(80)90029-4
[27] B Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985) 381 · Zbl 0587.30043
[28] H Masur, Uniquely ergodic quadratic differentials, Comment. Math. Helv. 55 (1980) 255 · Zbl 0436.30034 · doi:10.1007/BF02566685 · eudml:139824
[29] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. \((2)\) 115 (1982) 169 · Zbl 0497.28012 · doi:10.2307/1971341
[30] H Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982) 183 · Zbl 0508.30039 · doi:10.1215/S0012-7094-82-04912-2
[31] H Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387 · Zbl 0780.30032 · doi:10.1215/S0012-7094-92-06613-0
[32] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103 · Zbl 0941.32012 · doi:10.1007/s002220050343 · arxiv:math/9804098
[33] H A Masur, Y N Minsky, Unstable quasi-geodesics in Teichmüller space, Contemp. Math. 256, Amer. Math. Soc. (2000) 239 · Zbl 0960.30033
[34] H A Masur, M Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995) 259 · Zbl 0878.32015 · emis:journals/AASF/Vol20/vol20.html · eudml:230893
[35] J McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583 · Zbl 0579.57006 · doi:10.2307/2000100
[36] J McCarthy, A Papadopoulos, Dynamics on Thurston’s sphere of projective measured foliations, Comment. Math. Helv. 64 (1989) 133 · Zbl 0681.57002 · doi:10.1007/BF02564666 · eudml:140145
[37] Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc. 7 (1994) 539 · Zbl 0808.30027 · doi:10.2307/2152785
[38] Y N Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996) 121 · Zbl 0848.30031 · doi:10.1515/crll.1995.473.121 · crelle:GDZPPN002213532 · eudml:153807
[39] L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305 · Zbl 0851.20037 · doi:10.1016/0022-4049(95)00081-X
[40] L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447 · Zbl 0895.20028 · doi:10.1090/S0002-9939-97-04249-4
[41] L Mosher, Stable Teichmüller quasigeodesics and ending laminations, Geom. Topol. 7 (2003) 33 · Zbl 1021.57009 · doi:10.2140/gt.2003.7.33 · emis:journals/UW/gt/GTVol7/paper2.abs.html · eudml:122910 · arxiv:math/0107035
[42] D Mumford, A remark on Mahler’s compactness theorem, Proc. Amer. Math. Soc. 28 (1971) 289 · Zbl 0215.23202 · doi:10.2307/2037802
[43] J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189 · JFM 53.0545.12 · doi:10.1007/BF02421324
[44] J P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996) · Zbl 0855.57003
[45] H L Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970) 497 · Zbl 0189.36401 · doi:10.1073/pnas.65.3.497
[46] J R Stallings, Non-positively curved triangles of groups, World Sci. Publ., River Edge, NJ (1991) 491 · Zbl 0843.20033
[47] K Whittlesey, Normal all pseudo-Anosov subgroups of mapping class groups, Geom. Topol. 4 (2000) 293 · Zbl 0962.57007 · doi:10.2140/gt.2000.4.293 · emis:journals/UW/gt/GTVol4/paper10.abs.html · eudml:120997 · arxiv:math/9906133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.