zbMATH — the first resource for mathematics

The Hoffman-Singleton graph and its automorphisms. (English) Zbl 1021.05046
Summary: We describe the Hoffman-Singleton graph geometrically, showing that it is closely related to the incidence graph of the affine plane over \(\mathbb{Z}_5\). This allows us to construct all automorphisms of the graph.

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
Full Text: DOI
[1] Benson, C. T.; Losey, N. E., On a graph of Hoffman and Singleton, J. Combin. Theory, 11, 67-79, (1971) · Zbl 0223.50019
[2] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989. · Zbl 0747.05073
[3] Calderbank, A. R.; Wales, D. B., A global code invariant under the Higman-Sims group, J. Algebra, 75, 233-260, (1982) · Zbl 0492.20011
[4] Fan, C.; Schwenk, A. J., Structure of the Hoffman-Singleton graph, Congr. Numer, 94, 3-8, (1993) · Zbl 0801.05037
[5] Haemers, W. H.; Cameron, P. J. (ed.); Hirschfeld, J. W.P. (ed.); Hughes, D. R. (ed.), Anewpartial geometry constructed from the Hoffman-Singleton graph, 119-127, (1981), Cambridge
[6] P.R. Hafner, “Geometric realisation of the graphs of McKay-Miller-Širá?,” submitted. · Zbl 1043.05060
[7] Higman, D. G., Primitive rank 3 groups with a prime subdegree, Math. Z, 91, 70-86, (1966) · Zbl 0136.01402
[8] Hoffman, A. J.; Singleton, R. R., On Moore graphs with diameters 2 and 3, IBM J. Res. Dev., 4, 497-504, (1960) · Zbl 0096.38102
[9] James, L. O., A combinatorial proof that the Moore (7,2) graph is unique, Utilitas Mathematica, 5, 79-84, (1974) · Zbl 0279.05117
[10] McKay, B. D.; Miller, M.; Širáň, J., A note on large graphs of diameter two and given maximum degree, J. Combin. Theory Ser. B, 74, 110-118, (1998) · Zbl 0911.05031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.