×

Wrinkled tori and bursts due to resonant temporal forcing. (English) Zbl 1020.37030

In this mainly numerical article the authors study the effect of resonant temporal forcing on a system undergoing a Hopf bifurcation with \(D_4\) (square) symmetry. The forcing has a large impact on the behaviour of the system if its frequency is near a strong resonance with the Hopf frequency. Indeed, bursts with large dynamical range occur. This occurrence is related to the presence of heteroclinic connections to infinity.
The focus in the article is on a particular (but representative) example in which an attracting quasiperiodic solution that exists in absence of forcing ‘wrinkles’ into chaos as the amplitude of the forcing increases. The overall behaviour is governed by the approach of the resulting attractor to solutions at infinity. Windows of stable periodic solutions are also found and their corresponding attractor is destroyed still at finite amplitude by a boundary crisis. If the strength of the forcing is increased, the solution looses stability in a torus bifurcation, producing a quasiperiodic solution which apparently comes close to infinity, forming a sequence of bursts of infinite dynamic range.
Other aspects of the complicated observed dynamics are related to the presence of a new type of gluing bifurcation, whose existence is not only observe numerically but also proved analytically in the Appendix.

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37G40 Dynamical aspects of symmetries, equivariant bifurcation theory

Software:

AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Dangelmayr, E. Knobloch, On the Hopf bifurcation with broken O(2) symmetry, in: W. Güttinger, G. Dangelmayr (Eds.), The Physics of Structure Formation, Springer, Berlin, 1987, pp. 387-393.; G. Dangelmayr, E. Knobloch, On the Hopf bifurcation with broken O(2) symmetry, in: W. Güttinger, G. Dangelmayr (Eds.), The Physics of Structure Formation, Springer, Berlin, 1987, pp. 387-393. · Zbl 0684.58028
[2] Dangelmayr, G.; Knobloch, E., Hopf bifurcation with broken circular symmetry, Nonlinearity, 4, 399-427 (1991) · Zbl 0731.58051
[3] Lauterbach, R.; Roberts, M., Heteroclinic cycles in dynamical systems with broken spherical symmetry, J. Diff. Eq., 100, 22-48 (1992) · Zbl 0765.34028
[4] E. Knobloch, System symmetry breaking and Shil’nikov dynamics, in: J. Chadam, M. Golubitsky, W. Langford, B. Wetton (Eds.), Pattern Formation: Symmetry Methods and Applications. American Mathematical Society, Providence, 1996, pp. 271-279.; E. Knobloch, System symmetry breaking and Shil’nikov dynamics, in: J. Chadam, M. Golubitsky, W. Langford, B. Wetton (Eds.), Pattern Formation: Symmetry Methods and Applications. American Mathematical Society, Providence, 1996, pp. 271-279. · Zbl 0849.58015
[5] Hirschberg, P.; Knobloch, E., Complex dynamics in the Hopf bifurcation with broken translation symmetry, Physica D, 92, 56-78 (1996) · Zbl 0891.34044
[6] Landsberg, A. S.; Knobloch, E., Oscillatory bifurcation with broken translation symmetry, Phys. Rev. E, 53, 3579-3600 (1996)
[7] Moehlis, J.; Knobloch, E., Forced symmetry breaking as a mechanism for bursting, Phys. Rev. Lett., 80, 5329-5332 (1998)
[8] Moehlis, J.; Knobloch, E., Bursts in oscillatory systems with broken \(D_4\) symmetry, Physica D, 135, 263-304 (2000) · Zbl 0941.34024
[9] Gambaudo, J. M., Perturbation of a Hopf bifurcation by an external time-periodic forcing, J. Diff. Eq., 57, 172-199 (1985) · Zbl 0516.34042
[10] Chiffaudel, A.; Fauve, S., Strong resonance in forced oscillatory convection, Phys. Rev. A, 35, 4004-4007 (1987)
[11] Riecke, H.; Crawford, J. D.; Knobloch, E., Time-modulated oscillatory convection, Phys. Rev. Lett., 61, 1942-1945 (1988)
[12] Walgraef, D., External forcing of spatio-temporal patterns, Europhys. Lett., 7, 485-491 (1988)
[13] Vance, W.; Ross, J., A detailed study of a forced chemical oscillator: Arnol’d tongues and bifurcation sets, J. Chem. Phys., 91, 7654-7670 (1989)
[14] Riecke, H.; Silber, M.; Kramer, L., Temporal forcing of small-amplitude waves in anisotropic systems, Phys. Rev. E, 49, 4100-4113 (1994)
[15] Rehberg, I.; Rasenat, S.; Fineberg, J.; de la Torre Juárez, M.; Steinberg, V., Temporal modulation of traveling waves, Phys. Rev. Lett., 61, 2449-2452 (1988)
[16] Tennakoon, S. G.K.; Andereck, C. D.; Hegseth, J. J.; Riecke, H., Temporal modulation of traveling waves in the flow between rotating cylinders with broken azimuthal symmetry, Phys. Rev. E, 54, 5053-5065 (1996)
[17] de la Torre Juárez, M.; Rehberg, I., Four-wave resonance in electrohydrodynamic convection, Phys. Rev. A, 42, 2096-2100 (1990)
[18] Elphick, C.; Iooss, G.; Tirapegui, E., Normal form reduction for time-periodically driven differential equations, Phys. Lett. A, 120, 459-463 (1987)
[19] C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet, G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica D 29 (1987) 95-127 (Addendum, Physica D 32 (1988) 488).; C. Elphick, E. Tirapegui, M.E. Brachet, P. Coullet, G. Iooss, A simple global characterization for normal forms of singular vector fields, Physica D 29 (1987) 95-127 (Addendum, Physica D 32 (1988) 488). · Zbl 0633.58020
[20] Swift, J. W., Hopf bifurcation with the symmetry of the square, Nonlinearity, 1, 333-377 (1988) · Zbl 0657.58023
[21] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: continuation and bifurcation software for ordinary differential equations; available via FTP from directory pub/doedel/auto at ftp.cs.concordia.ca, 1997.; E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: continuation and bifurcation software for ordinary differential equations; available via FTP from directory pub/doedel/auto at ftp.cs.concordia.ca, 1997.
[22] J. Moehlis, Forced Symmetry-Breaking as a Mechanism for Bursting, Ph.D. Thesis, University of California, Berkeley, CA, 2000.; J. Moehlis, Forced Symmetry-Breaking as a Mechanism for Bursting, Ph.D. Thesis, University of California, Berkeley, CA, 2000.
[23] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin, 1983.; J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin, 1983. · Zbl 0515.34001
[24] Rucklidge, A. M., Chaos in a low-order model of magnetoconvection, Physica D, 62, 323-337 (1993) · Zbl 0787.76025
[25] A.M. Rucklidge, Global bifurcations in the Takens-Bogdanov normal form with \(D_4\) symmetry near the O(2) limit, Preprint, 2000.; A.M. Rucklidge, Global bifurcations in the Takens-Bogdanov normal form with \(D_4\) symmetry near the O(2) limit, Preprint, 2000. · Zbl 0983.37055
[26] Matthies, K., A subshift of finite type in the Bogdanov-Takens bifurcation with \(D_3\) symmetry, Doc. Math. J. DMV, 4, 463-485 (1999) · Zbl 0929.34040
[27] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, Berlin, 1988.; M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, Berlin, 1988. · Zbl 0691.58003
[28] Gollub, J. P.; Benson, S. V., Many routes to turbulent convection, J. Fluid Mech., 100, 449-470 (1980)
[29] P. Bergé, Y. Pomeau, C. Vidal, Order Within Chaos: Towards a Deterministic Approach to Turbulence, Wiley, New York, 1984.; P. Bergé, Y. Pomeau, C. Vidal, Order Within Chaos: Towards a Deterministic Approach to Turbulence, Wiley, New York, 1984.
[30] Ecke, R. E.; Kevrekidis, I. G., Interactions of resonances and global bifurcations in Rayleigh-Bénard convection, Phys. Lett. A, 131, 344-352 (1988)
[31] Kevrekidis, I. G.; Rico-Martinez, R.; Ecke, R. E.; Farber, R. M.; Lapedes, A. S., Global bifurcations in Rayleigh-Bénard convection. Experiments, empirical maps and numerical bifurcation analysis, Physica D, 71, 342-362 (1994) · Zbl 0825.76228
[32] Schreiber, I.; Marek, M., Transition to chaos via two-torus in coupled reaction-diffusion cells, Phys. Lett. A, 91, 263-266 (1982)
[33] Franceschini, V.; Tebaldi, C., Breaking and disappearance of tori, Commun. Math. Phys., 94, 317-329 (1984) · Zbl 0568.76056
[34] J. Curry, J. Yorke, A transition from Hopf bifurcation to chaos: computer experiments on maps in \(R^2\), The structure of attractors in dynamical systems, Lecture Notes in Mathematics, Vol. 668, Springer, Berlin, 1978, pp. 48-68.; J. Curry, J. Yorke, A transition from Hopf bifurcation to chaos: computer experiments on maps in \(R^2\), The structure of attractors in dynamical systems, Lecture Notes in Mathematics, Vol. 668, Springer, Berlin, 1978, pp. 48-68.
[35] Aronson, D. G.; Chory, M. A.; Hall, G. R.; McGehee, R. P., Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer-assisted study, Commun. Math. Phys., 83, 303-354 (1982) · Zbl 0499.70034
[36] D.G. Aronson, M.A. Chory, G.R. Hall, R.P. McGehee, A discrete dynamical system with subtly wild behavior, in: P.J. Holmes (Ed.), New Approaches to Nonlinear Problems in Dynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1980, pp. 339-359.; D.G. Aronson, M.A. Chory, G.R. Hall, R.P. McGehee, A discrete dynamical system with subtly wild behavior, in: P.J. Holmes (Ed.), New Approaches to Nonlinear Problems in Dynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1980, pp. 339-359.
[37] Ben-Mizrachi, A.; Procaccia, I., Wrinkling of mode-locked tori in the transition to chaos, Phys. Rev. A, 31, 3990-3992 (1985)
[38] Grebogi, C.; Ott, E.; Yorke, J. A., Chaotic attractors in crisis, Phys. Rev. Lett., 48, 1507-1510 (1982)
[39] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, sudden changes in chaotic attractors, and transient chaos, Physica D, 7, 181-200 (1983) · Zbl 0561.58029
[40] E. Knobloch, J. Moehlis, Bursting mechanisms for hydrodynamical systems, in: M. Golubitsky, D. Luss, S.H. Strogatz (Eds.), Pattern Formation in Continuous and Coupled Systems: A Survey Volume, Series: IMA Volumes in Mathematics and its Applications, Vol. 115, Springer, Berlin, 1999, pp. 157-174.; E. Knobloch, J. Moehlis, Bursting mechanisms for hydrodynamical systems, in: M. Golubitsky, D. Luss, S.H. Strogatz (Eds.), Pattern Formation in Continuous and Coupled Systems: A Survey Volume, Series: IMA Volumes in Mathematics and its Applications, Vol. 115, Springer, Berlin, 1999, pp. 157-174. · Zbl 0981.76035
[41] E. Knobloch, J. Moehlis, Burst mechanisms in hydrodynamics, in: L. Debnath, D. Riahi (Eds.), Nonlinear Instability, Chaos, and Turbulence, Vol. II, Computational Mechanics Publications, Southampton, 2000, pp. 237-287.; E. Knobloch, J. Moehlis, Burst mechanisms in hydrodynamics, in: L. Debnath, D. Riahi (Eds.), Nonlinear Instability, Chaos, and Turbulence, Vol. II, Computational Mechanics Publications, Southampton, 2000, pp. 237-287. · Zbl 0995.76026
[42] Pomeau, Y.; Manneville, P., Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., 74, 189-197 (1980)
[43] Steindl, A.; Troger, H., One and two-parameter bifurcations to divergence and flutter in the three-dimensional motions of a fluid conveying viscoelastic tube with \(D_4\) symmetry, Nonlinear Dynam., 8, 161-178 (1995)
[44] A.K. Bajaj, C.N. Folley, Three-dimensional dynamics of a continuous cantilever tube conveying a pulsatile flow, Z. Angew. Math. Mech. 76 (no. 2 Suppl.) (1996) 547-550.; A.K. Bajaj, C.N. Folley, Three-dimensional dynamics of a continuous cantilever tube conveying a pulsatile flow, Z. Angew. Math. Mech. 76 (no. 2 Suppl.) (1996) 547-550. · Zbl 0925.73673
[45] Feng, Z. C.; Sethna, P. R., Symmetry-breaking bifurcations in resonant surface waves, J. Fluid Mech., 199, 495-518 (1989) · Zbl 0659.76026
[46] Simonelli, F.; Gollub, J. P., Surface wave mode interactions: effects of symmetry and degeneracy, J. Fluid Mech., 199, 471-494 (1989)
[47] Silber, M.; Knobloch, E., Parametrically excited surface waves in square geometry, Phys. Lett. A, 137, 349-354 (1989)
[48] Nagata, M., Nonlinear Faraday resonance in a box with a square base, J. Fluid Mech., 209, 265-284 (1989) · Zbl 0681.76019
[49] M. Nagata, Chaotic behaviour of parametrically excited surface waves in square geometry, Eur. J. Mech. B 10 (no. 2 Suppl.) (1991) 61-66.; M. Nagata, Chaotic behaviour of parametrically excited surface waves in square geometry, Eur. J. Mech. B 10 (no. 2 Suppl.) (1991) 61-66.
[50] Field, M. J., Isotopy and stability of equivariant diffeomorphisms, Proc. London Math. Soc., 46, 487-516 (1983) · Zbl 0491.58019
[51] Armbruster, D.; Guckenheimer, J.; Kim, S., Chaotic dynamics in systems with square symmetry, Phys. Lett. A, 140, 416-420 (1989)
[52] D. Armbruster, Codimension 2 bifurcation in binary convection with square symmetry, in: F.H. Busse, L. Kramer (Eds.), Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems, Plenum Press, New York, 1990, pp. 385-398.; D. Armbruster, Codimension 2 bifurcation in binary convection with square symmetry, in: F.H. Busse, L. Kramer (Eds.), Nonlinear Evolution of Spatio-temporal Structures in Dissipative Continuous Systems, Plenum Press, New York, 1990, pp. 385-398.
[53] D. Armbruster, Square and almost square symmetry in binary convection, Eur. J. Mech. B 10 (no. 2 Suppl.) (1991) 7-12.; D. Armbruster, Square and almost square symmetry in binary convection, Eur. J. Mech. B 10 (no. 2 Suppl.) (1991) 7-12. · Zbl 0727.76049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.