zbMATH — the first resource for mathematics

Variational mesh adaptation. II: Error estimates and monitor functions. (English) Zbl 1018.65140
Summary: The key to the success of a variational mesh adaptation method is to define a proper monitor function which controls mesh adaptation. In this paper we study the choice of the monitor function for the variational adaptive mesh method developed in part I by W. Huang [J. Comput. Phys. 174, 903-924 (2001; Zbl 0991.65131)]. Two types of monitor functions, scalar matrix and non-scalar matrix ones, are defined based on asymptotic estimates of interpolation error obtained using the interpolation theory of finite element methods.
The choice of the adaptation intensity parameter is also discussed for each of these monitor functions. Asymptotic bounds on interpolation error are obtained for adaptive meshes that satisfy the regularity and equidistribution conditions. Two-dimensional numerical results are given to verify the theoretical findings.

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI
[1] Babuska, I.; Rheinboldt, W.C., A posteriori error estimates for the finite element method, Int. J. numer. meth. eng., 12, 1597-1615, (1978) · Zbl 0396.65068
[2] Baines, M.J.; Leary, S.J., Fluctuations and signals for scalar hyperbolic equations on adjustable meshes, Comm. numer. meth. eng., 15, 877-886, (1999) · Zbl 0946.65075
[3] Bank, R.E.; Smith, R.K., Mesh smoothing using a posteriori error estimates, SIAM J. numer. anal., 34, 979-997, (1997) · Zbl 0873.65092
[4] Beckett, G.; Mackenzie, J.A., Convergence analysis of finite-difference approximations on equidistributed grids to a singularly perturbed boundary value problems, J. comput. appl. math., 35, 109-131, (2000) · Zbl 0963.65086
[5] Brackbill, J.U., An adaptive grid with directional control, J. comput. phys., 108, 35-50, (1993) · Zbl 0832.65132
[6] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342-368, (1982) · Zbl 0489.76007
[7] Carey, G.F.; Dinh, H.T., Grading functions and mesh redistribution, SIAM J. numer. anal., 22, 1028-1040, (1985) · Zbl 0577.65076
[8] Chen, K., Error equidistribution and mesh adaptation, SIAM J. sci. comput., 15, 798-818, (1994) · Zbl 0806.65090
[9] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[10] C. de Boor, Good approximation by splines with variables knots ii, in: G.A. Watson (Ed.), Lecture Notes in Mathematics vol. 363, Springer, Berlin, 1974, pp. 12-20 (Conference on the Numerical Solution of Differential Equations, Dundee, Scotland, 1973)
[11] Dvinsky, A.S., Adaptive grid generation from harmonic maps on Riemannian manifolds, J. comput. phys., 95, 450-476, (1991) · Zbl 0733.65074
[12] ()
[13] Evans, L.C., ()
[14] Hagmeeijer, R., Grid adaption based on modified anisotropic diffusion equations formulated in the parametric domain, J. comput. phys., 115, 169-183, (1994) · Zbl 0811.76043
[15] Huang, W., Practical aspects of formulation and solution of moving mesh partial differential equations, J. comput. phys., 171, 753-775, (2001) · Zbl 0990.65107
[16] Huang, W., Variational mesh adaptation: isotropy and equidistribution, J. comput. phys., 174, 903-924, (2001) · Zbl 0991.65131
[17] Knupp, P.M., Mesh generation using vector-fields, J. comput. phys., 119, 142-148, (1995) · Zbl 0839.65134
[18] Knupp, P.M.; Steinberg, S., Fundamentals of grid generation, (1994), CRC Press Boca Raton · Zbl 0855.65123
[19] Knupp, P.M., Jacobian-weighted elliptic grid generation, SIAM J. sci. comput., 17, 1475-1490, (1996) · Zbl 0860.65114
[20] Knupp, P.M.; Robidoux, N., A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms, SIAM J. sci. comput., 21, 2029-2047, (2000) · Zbl 0959.65108
[21] Kober, H., On the arithmetic and geometric means and on hölder’s inequality, Proc. am. math. soc., 9, 452-459, (1958) · Zbl 0090.03303
[22] Liseikin, V.D., Grid generation methods, (1999), Springer Berlin · Zbl 0949.65098
[23] Reshetnyak, Yu.G., ()
[24] Schoen, R.; Yau, S.T., On univalent harmonic maps between surfaces, Inv. math., 44, 265-278, (1978) · Zbl 0388.58005
[25] Steinberg, S.; Roache, P.J., Variational grid generation, Numer. meth. P.D.E., 2, 71-96, (1986) · Zbl 0623.65127
[26] Thompson, J.F.; Warsi, Z.A.; Mastin, C.W., Numerical grid generation: foundations and applications, (1985), North-Holland New York · Zbl 0598.65086
[27] Tourigny, Y.; Baines, M.J., Analysis of an algorithm for generating locally optimal meshes for L2 approximation by discontinuous piecewise polynomials, Math. comp., 66, 623-650, (1997) · Zbl 0863.41013
[28] Tourigny, Y.; Hülsemann, F., A new moving mesh algorithm for the finite element solution of variational problems, SIAM J. numer. anal., 35, 1416-1438, (1998), (electronic) · Zbl 0913.65059
[29] Winslow, A., Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh, J. comput. phys., 1, 149-172, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.