×

zbMATH — the first resource for mathematics

The M/G/1 retrial queue with feedback and starting failures. (English) Zbl 1018.60088
A single server retrial queue with Bernoulli feedback and FIFO discipline is studied, where the server is subjected to starting failure. The paper presents some necessary and sufficient conditions for the stability of the system. Some performance measures, such as mean system size, server utilization, mean orbit size (between trials, the blocked customer joins a pool of unsatisfied customers called orbit), probability that the server is under repair, probability that the orbit is empty, are obtained. The paper is accomplished by some numerical examples.

MSC:
60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artalejo, J.R.; Falin, G.I., On the orbit characteristic of the M/G/1 retrial queue, Nav. res. logis., 43, 8, 1147-1161, (1996) · Zbl 0859.60088
[2] Artalejo, J.R.; Gomez-Corral, A., Steady state solution of a single server queue with linear request repeated, J. appl. prob., 34, 223-233, (1997) · Zbl 0876.60082
[3] Artalejo, J.R., Accessible bibliography on retrial queues, Math. comput. modell., 30, 1-6, (1999) · Zbl 1009.90001
[4] Choi, B.D.; Chang, Y., Single server retrial queues with priority calls, Math. comput. modell., 30, 3-4, 7-32, (1999) · Zbl 1042.60533
[5] Choi, B.D.; Kulkarni, V.G., Feedback retrial queueing systems, Stochastic model relat. fields, 93-105, (1992) · Zbl 0783.60092
[6] Choi, B.D.; Kim, Y.C.; Lee, Y.W., The M/M/C retrial queue with geometric loss and feedback, Comput. math. appl., 36, 6, 41-52, (1998) · Zbl 0947.90024
[7] Choi, B.D.; Rhee, K.H.; Park, K.K., The M/G/1 retrial queue with retrial rate control policy, Prob. eng. info. sci., 7, 26-46, (1993)
[8] Choi, B.D.; Shin, Y.W.; Ahn, W.C., Retrial queues with collision arising from unslotted CSMA/CD protocol, Queueing syst., 11, 335-356, (1992) · Zbl 0762.60088
[9] Cooper, R.B., Queues served in cyclic order: waiting times, Bell syst. tech. J., 49, 339-413, (1970) · Zbl 0208.22502
[10] Cooper, R.B., Introduction to queueing theory, (1981), North-Holland New York · Zbl 0467.60001
[11] Doshi, B.T., A note on stochastic decomposition in a GI/G/l queue with vacation or setup times, J. appl. prob., 22, 419-428, (1985) · Zbl 0566.60090
[12] Falin, G.I., A survey of retrial queues, Queueing syst., 7, 127-168, (1990) · Zbl 0709.60097
[13] Falin, G.I.; Templeton, J.G.C., Retrial queues, (1997), Chapman and Hall New York · Zbl 0944.60005
[14] Fayolle, G., A simple telephone exchange with delayed feedbacks, (), 245-253
[15] Fuhrmann, S.W., A note on the M/G/1 queue with server vacations, Opns. res., 32, 1368-1373, (1984) · Zbl 0553.90046
[16] Fuhrmann, S.W.; Cooper, R.B., Stochastic decomposition in the M/G/1 queue with generalized vacations, Opns. res., 33, 1117-1129, (1985) · Zbl 0585.90033
[17] Gomez-Corral, A., Stochastic analysis of a single server retrial queue with general retrial times, Nav. res. logis., 46, 561-581, (1999) · Zbl 0934.90017
[18] Kapyrin, V.A., A study of the stationary characteristics of a queueing system with recurring demands, Cybernetics, 13, 584-590, (1977)
[19] Keilson, J.; Cozzolino, J.; Young, H., A service system with unfilled requests repeated, Opns. res., 16, 1126-1137, (1968) · Zbl 0165.52703
[20] Kulkarni, V.G.; Choi, B.D., Retrial queue with server subject to breakdown and repairs, Queueing syst., 7, 2, 191-208, (1990) · Zbl 0727.60110
[21] Levy, Y.; Yechiali, U., Utilization of idle time in an M/G/1 queueing system, Manage. sci., 22, 202-211, (1975) · Zbl 0313.60067
[22] Mitrany, I.L.; Avi-Itzhak, B., A many server queue with service interruptions, Opns. res., 16, 628-638, (1968) · Zbl 0239.60094
[23] Sennott, L.I.; Humblet, P.A.; Tweedi, R.L., Mean drifts and the non-ergodicity of Markov chains, Opns. res., 31, 783-789, (1983) · Zbl 0525.60072
[24] Takacs, l., A single server queue with feedback, Bell syst. tech. J., 42, 505-519, (1963)
[25] Welch, P.D., On generalized M/G/1 queueing process in which the first customer of each busy period receives exceptional service, Opns. res., 12, 736-752, (1964) · Zbl 0132.38404
[26] Yang, T.; Li, H., The M/G/1 retrial queue with the server subject to starting failures, Queueing syst., 16, 83-96, (1994) · Zbl 0810.90046
[27] Yang, T.; Posner, M.J.M.; Templeton, J.G.C.; Li, H., Approximation method for the M/G/1 retrial queue with general retrial times, Eur. J. oper. res., 76, 552-562, (1994) · Zbl 0802.60089
[28] Yang, T.; Templeton, J.G.C., A survey on retrial queue, Queueing syst., 2, 201-233, (1987) · Zbl 0658.60124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.