×

zbMATH — the first resource for mathematics

A characteristic Galerkin method for discrete Boltzmann equation. (English) Zbl 1017.76043
Summary: We present a characteristic Galerkin finite element method for discrete Boltzmann equation to simulate fluid flow in complex geometries. The inherent geometric flexibility of the finite element method permits an easy use of simple Cartesian variables on unstructured meshes and the mesh clustering near large gradients. The characteristic Galerkin procedure with appropriate boundary condition results in accurate solutions with little numerical diffusion. Several test cases are conducted, including unsteady Couette flows, lid-driven cavity flows, and steady flow past a circular cylinder on unstructured meshes. The numerical results are in good agreement with previous analytical (if applicable), numerical, and experimental results.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Ann. rev. fluid mech., 30, 329, (1998) · Zbl 1398.76180
[2] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. rev. E., 55, R6333, (1997)
[3] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E., 56, 6811, (1997)
[4] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. comput. phys., 131, 241, (1997) · Zbl 0877.76062
[5] Filippova, O.; Hänel, D., Grid refinement for lattice-Boltzmann models, J. comput. phys., 147, 219, (1998) · Zbl 0917.76061
[6] Mei, R.; Luo, L.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J. comput. phys., 155, 307, (1999) · Zbl 0960.82028
[7] Mei, R.; Shyy, W.; Yu, D.; Luo, L., Lattice Boltzmann method for 3-D flows with curved boundary, J. comput. phys., 161, 680, (2000) · Zbl 0980.76064
[8] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice Boltzmann method. part I. nonuniform mesh grids, J. comput. phys., 129, 357, (1996) · Zbl 0868.76068
[9] He, X.; Doolen, G.D., Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys. rev. E., 56, 434, (1997)
[10] He, X.; Doolen, G.D., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. comput. phys., 134, 306, (1997) · Zbl 0886.76072
[11] Cao, N.; Chen, S.; Jin, S.; Martı́nez, D., Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. rev. E., E55, R21, (1997)
[12] Mei, R.; Shyy, W., On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. comput. phys., 143, 426, (1998) · Zbl 0934.76074
[13] Succi, S.; Amati, G.; Benzi, R., Challenges in lattice Boltzmann computing, J. stat. phys., 81, 5, (1995) · Zbl 1106.82376
[14] Xi, H.; Peng, G.; Chou, S.-H., Finite-volume lattice Boltzmann method, Phys. rev. E., 59, 6202, (1999)
[15] Xi, H.; Peng, G.; Chou, S.-H., Finite-volume lattice Boltzmann schemes in two and three dimensions, Phys. rev. E., 60, 3380, (1999)
[16] Zienkiewicz, O.C.; Codina, R., A general algorithm for compressible and incompressible flow—part I. the split, characteristic-based scheme, Int. J. numer. methods fluids, 20, 869, (1995) · Zbl 0837.76043
[17] Donea, J., A taylor – galerkin method for convection transport problems, Int. J. numer. methods fluids, 4, 1043, (1984)
[18] Zienkiewicz, O.C.; Taylor, R., Finite element method, II, (1991)
[19] Lax, P.D.; Wendroff, B., Systems of conservation laws, Comm. pure appl. math., 13, 217, (1960) · Zbl 0152.44802
[20] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998) · Zbl 0941.76002
[21] Matsushita, T., Study of evaporation and condensation problems by kinetic theory, (1976)
[22] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component system, Phys. rev., 94, 511, (1954) · Zbl 0055.23609
[23] Wolf-Gladrow, D., Lattice-gas cellular automata and lattice Boltzmann models, (2000) · Zbl 0999.82054
[24] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier Stokes equation, Comput. method. appl. mech. eng., 32, 199, (1982) · Zbl 0497.76041
[25] Noble, D.; Chen, S.; Georgiadis, J.; Buckius, R., A consistent hydrodynamic boundary condition for the lattice Boltzmann method, Phys. fluids, 7, 203, (1995) · Zbl 0846.76086
[26] Inamuro, T.; Yoshino, M.; Ogino, F., A non-slip boundary condition for lattice Boltzmann simulations, Phys. fluids, 7, 2928, (1995) · Zbl 1027.76631
[27] Maier, R.; Bernard, R.; Grunau, D., Boundary conditions for the lattice Boltzmann method, Phys. fluids, 8, 1788, (1996) · Zbl 1027.76632
[28] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. fluids, 9, 1591, (1997) · Zbl 1185.76873
[29] Hou, S.; Zou, Q.; Chen, S.; Dollen, G.; Cogley, A.C., Simulation of cavity flow by the lattice Boltzmann method, J. comput. phys., 118, 329, (1995)
[30] Chen, S.; Martı́nez, D.; Mei, R., On boundary conditions in lattice Boltzmann methods, Phys. fluids, 8, 2527, (1996) · Zbl 1027.76630
[31] Papanastasiou, T.C.; Malamataris, N.; Ellwood, K., A new out flow boundary condition, Int. J. numer. methods fluids, 14, 587, (1992) · Zbl 0747.76039
[32] Sani, R.L.; Gresho, P.M., Résumé and remarks on the open boundary condition minisymposium, Int. J. numer. methods fluids, 18, 983, (1994) · Zbl 0806.76072
[33] Griffiths, D.F., The “no boundary condition” outflow boundary condition, Int. J. numer. methods fluids, 24, 393, (1997) · Zbl 1113.76402
[34] Renardy, M., Imposing “no” boundary condition at outflow: why does it work?, Int. J. numer. methods fluids, 24, 413, (1997) · Zbl 1113.76405
[35] Comini, G.; Manzan, M.; Nonino, C., Analysis of finite element schemes for convection-type problems, Int. J. numer. methods fluids, 20, 443, (1995) · Zbl 0838.76038
[36] Ferziger, J.H.; Perić, M., Computational methods for fluid dynamics, (1999) · Zbl 0869.76003
[37] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. comput. phys., 48, 387, (1982) · Zbl 0511.76031
[38] Lin, C.-L.; Lai, Y., Lattice Boltzmann method on composite grids, Phys. rev. E., 62, 2219, (2000)
[39] Tritton, J.D., Experiments on the flow past a circular cylinder at low Reynolds numbers, J. fluid mech., 6, 547, (1959) · Zbl 0092.19502
[40] Dennis, S.C.R.; Chang, G.Z., Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. fluid mech., 42, 471, (1970) · Zbl 0193.26202
[41] Nieuwstadt, F.; Keller, H.B., Viscous flow past circular cylinders, Comput. fluids, 1, 59, (1973) · Zbl 0328.76022
[42] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. fluid mech., 98, 819, (1980) · Zbl 0428.76032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.