# zbMATH — the first resource for mathematics

Second-order sign-preserving conservative interpolation (remapping) on general grids. (English) Zbl 1016.65004
Summary: An accurate conservative interpolation (remapping) algorithm is an essential component of most arbitrary Lagrangian-Eulerian methods. We describe a local remapping algorithm for a positive scalar function. This algorithm is second-order accurate, conservative, and sign preserving. The algorithm is based on estimating the mass exchanged between cells at their common interface, and so is equally applicable to structured and unstructured grids. We construct the algorithm in a series of steps, clearly delineating the assumptions and errors made at each step. We validate our theory with a suite of numerical examples, analyzing the results from the viewpoint of accuracy and order of convergence.

##### MSC:
 65D05 Numerical interpolation
REMAP3D; MPDATA
Full Text:
##### References:
 [1] R.W. Anderson, R.B. Pember, N.S. Elliot, An arbitrary Lagrangian-Eulerian method with local structured adaptive mesh refinement for modeling shock hydrodynamics, AIAA 2002-0738, also LNLL Report UCRL-JC-141625 [2] Benson, D.J., An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. methods appl. mech. engrg., 72, 305-350, (1989) · Zbl 0675.73037 [3] Barth, T.J., Numerical methods for gasdynamics systems on unstructured grids, (), 195-285 · Zbl 0969.76040 [4] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. methods appl. mech. engrg., 99, 235-394, (1992) · Zbl 0763.73052 [5] Benson, D.J., Momentum advection on a staggered mesh, J. comput. phys., 100, 143-162, (1992) · Zbl 0758.76038 [6] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. comput. phys., 87, 171-200, (1990) · Zbl 0694.65041 [7] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary lagrangian – eulerian finite element method for transient dynamic fluid – structure interactions, Comput. methods appl. mech. engrg., 33, 689-723, (1982) · Zbl 0508.73063 [8] Dukowicz, J.K.; Kodis, J.W., Accurate conservative remapping (rezoning) for arbitrary lagrangian – eulerian computations, SIAM J. stat. comput., 8, 305-321, (1987) · Zbl 0644.76085 [9] Dukowicz, J.K.; Cline, M.C.; Addessio, F.L., A general topology Godunov method, J. comput. phys., 82, 29-63, (1989) · Zbl 0665.76032 [10] J. Dukowicz, N. Padial, REMAP3D: a conservative three-dimensional remapping code, LA-12136-MS, Report of Los Alamos National Laboratory, Los Alamos, NM, USA, 1991 [11] Dukowicz, J.; Baumgardner, J., Incremental remapping as a transport/advection algorithm, J. comput. phys., 160, 318-335, (2000) · Zbl 0972.76079 [12] Frey, P.J.; George, P.-L., Mesh generation, (), 47-96 [13] Grandy, J., Conservative remapping and regions overlays by intersecting arbitrary polyhedra, J. comput. phys., 148, 433-466, (1999) · Zbl 0932.76073 [14] Hirt, C.; Amsden, A.; Cook, J., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974), reprinted in 135 (1997), pp. 203-216 · Zbl 0292.76018 [15] Kershaw, D.S.; Prasad, M.K.; Shaw, M.J.; Milovich, J.L., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. methods appl. mech. engrg., 158, 81-116, (1998) · Zbl 0954.76045 [16] Knupp, P.; Knupp, P.; Shashkov, M., Reference Jacobian optimization-based rezone strategies for arbitrary lagrangian – eulerian methods, J. comput. phys., 176, 93-128, (2002) · Zbl 1120.76340 [17] Kjellgren, P.; Hyvarien, J., An arbitrary lagrangian – eulerian finite element method, Comput. mech., 21, 81-90, (1998) · Zbl 0911.76036 [18] A.G. Kulikovskii, N.V. Pogorelov, A.Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapter 2.7 Reconstruction Procedures and Slope Limiters, vol. 118, pp. 76-120 · Zbl 0926.35011 [19] Mair, H.U., Review: hydrocodes for structural response to underwater explosions, Shock vibr., 6/2, 81-96, (1999) [20] Marchand, P., (), 77-80 [21] Margolin, L.; Smolarkiewicz, P., Antidiffusive velocities for multipass donor cell advection, SIAM J. sci. comput., 20, 907-929, (1998) · Zbl 0922.76255 [22] L.G. Margolin, C.W. Beason, Remapping on the staggered mesh, Report UCRL-99682 of Lawrence Livermore National Laboratory, 1988 [23] Margolin, L.G., Introduction to an arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 135, 198-202, (1997) · Zbl 0938.76067 [24] L.G. Margolin, M. Shashkov, Second-order sign-preserving remapping on general grids, Report of Los Alamos National Laboratory, LAUR-02-525 (http://cnls.lanl.gov/∼shashkov) · Zbl 1016.65004 [25] S. Mosso, D. Burton, et al., A second order, two- and three-dimensional remap method, LA-UR-98-5353, Report of Los Alamos National Laboratory, Los Alamos, NM, USA, 1988 [26] S. Mosso, B. Swartz, An unsplit, two-dimensional advection algorithm, LA-UR-01-1476, Report of Los Alamos National Laboratory, Los Alamos, NM, USA, 2000 [27] Okabe, A.; Boots, B., Spatial tessellations. concepts and applications of Voronoi diagrams, Chapter 2, definition and basic properties of Voronoi diagrams. wiley series in probability and statistics, (2000), John Wiley Chichester, England [28] O’Rourke, P.J.; Sahota, M.S., A variable explicit/implicit numerical method for calculating advection on unstructured meshes, J. comput. phys., 143, 312-345, (1998) · Zbl 0934.76060 [29] Peery, J.S.; Carroll, D.E., Multi-material ALE methods in unstructured grids, Comput. methods appl. mech. engrg., 187, 591-619, (2000) · Zbl 0980.74068 [30] Shashkov, M., Conservative finite-difference methods on general grids, (1995), CRC Press Boca Raton · Zbl 0844.65067 [31] Smolarkiewicz, P., A simple positive definite advection scheme with small implicit diffusion, Monthly weather rev., 111, 479-486, (1983) [32] Smolarkiewicz, P.; Margolin, L., MPDATA: a finite-difference solver for geophysical flows, J. comput. phys., 140, 459-480, (1998) · Zbl 0935.76064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.