×

zbMATH — the first resource for mathematics

Interval analysis and fuzzy set theory. (English) Zbl 1015.03513
Summary: An overview of interval analysis, its development, and its relationship to fuzzy set theory is given. Possible areas of further fruitful research are highlighted.

MSC:
03E72 Theory of fuzzy sets, etc.
65G40 General methods in interval analysis
Software:
VPI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albrecht, R.F., Topological approach to fuzzy sets and fuzzy logic, (), 1-7 · Zbl 0955.03033
[2] Albrecht, R.F., Topological theory of fuzziness, (), 1-11 · Zbl 0931.03062
[3] Albrecht, R.F., Topological concepts for hierachies of variables, types and controls, (), 1-8
[4] Anile, A.M.; Deodato, S.; Privitera, G., Implementing fuzzy arithmetic, Fuzzy sets and systems, 72, 239-250, (1995)
[5] Berleant, D., Automatically verified reasoning with both intervals and probability density functions, Interval comput., 2, 48-70, (1993) · Zbl 0829.65141
[6] Berleant, D., Automatically verified arithmetic on probability distributions and intervals, (), 227-244 · Zbl 0841.65143
[7] Berleant, D.; Goodman-Strauss, C., Bounding the results of arithmetic operations on random variables of unknown dependency using intervals, Reliable comput., 4, 147-165, (1998) · Zbl 0908.65139
[8] Dubois, D.; Prade, H., Fuzzy sets and statistical data, European J. oper. res., 25, 345-356, (1986) · Zbl 0588.62002
[9] Dubois, D.; Prade, H., Random sets and fuzzy interval analysis, Fuzzy sets and systems, 42, 87-101, (1991) · Zbl 0734.65041
[10] Dubois, D.; Kerre, E.; Mesiar, R.; Prade, H., Fuzzy interval analysis, (), 483-581 · Zbl 0988.26020
[11] Ely, J.S., The VPI software package for variable precision interval arithmetic, Interval comput., 2, 135-153, (1993) · Zbl 0829.65150
[12] S. Ferson, Quality assurance for Monte Carlo risk assessment, Proc. ISUMA-NAFIPS’95, 1995, pp. 14-19.
[13] S. Ferson, Probability bounds analysis software, in: Computing in Environmental Resource Management: Proc. Special Conf., Research Triangle Park, NC, Air and Waste Management Association, Pittsburgh, PA, December 2-4, 1996, pp. 669-678.
[14] S. Ferson, L. Ginzburg, Hybrid arithmetic, Proc. ISUMA-NAFIPS’95, 1995, pp. 619-623.
[15] Fuzzy arithmetic—special issue, Fuzzy sets and systems, 91, 2, (1997) · Zbl 0920.00014
[16] Hansen, E.R., A generalized interval arithmetic, (), 7-18 · Zbl 0302.65039
[17] M. Hanss, A nearly strict fuzzy arithmetic for solving problems with uncertainties, in: T. Whalen (Ed.), Proc. North American Fuzzy Information Processing Society, NAFIPS’00, 2000, pp. 439-443.
[18] Hoehle, U., Representation theorems for L-fuzzy quantities, Fuzzy sets and systems, 5, 83-107, (1981)
[19] ()
[20] Kaufmann, A.; Gupta, M.M., ()
[21] (), 227-244
[22] Kulisch, U., An axiomatic approach to rounded computation, Numer. math., 18, 1-17, (1971) · Zbl 0243.65017
[23] Kulisch, U., A new arithmetic for scientific computing, (), 1-26
[24] Kulisch, U.; Miranker, W., Computer arithmetic, (1982), Academic Press New York · Zbl 0597.65037
[25] Kulisch, U.; Miranker, W., The arithmetic of the digital computera new approach, SIAM rev., 28, 1, 1-40, (1986) · Zbl 0597.65037
[26] Lodwick, W.A.; Jamison, K.D., Interval methods and fuzzy optimization, Internat. J. uncertainty fuzziness knowledge-based reasoning, 5, 3, 239-250, (1997) · Zbl 1232.90353
[27] W.A. Lodwick, K.D. Jamison, F.D. Newman, Extension of interval validation methods to fuzzy set theory, Proc. North American Fuzzy Information Processing Society, NAFIPS’01, 2001.
[28] Markov, S.; Okumura, K., The contribution of T. sunaga to interval analysis and reliable computing, (), 167-188 · Zbl 0949.65045
[29] R.E. Moore, Interval analysis and automatic error analysis in digital computing, Ph.D. Thesis, Stanford, University, 1962.
[30] Moore, R.E., Interval analysis, (1966), Prentice-Hall New York · Zbl 0176.13301
[31] Moore, R.E., Methods and applications of interval analysis, (1979), Society for Industrial and Applied Mathematics Philadelphia · Zbl 0417.65022
[32] Moore, R.E., Risk analysis without Monte Carlo methods, Freiburger intervall-berichte, 84/1, 1-48, (1984)
[33] Moore, A.S., Interval risk analysis of real estate investmenta non-Monte Carlo approach, Frieburger intervall-berichte, 85/3, 23-49, (1985)
[34] Negoita, C.V.; Ralescu, D.A., Representation theorems for fuzzy concepts, Kybernetes, 4, 169-173, (1975) · Zbl 0352.02044
[35] Nguyen, H.T.; Kreinovich, V., Nested intervals and setsconcepts, relations to fuzzy sets, and applications, (), 245-290 · Zbl 0841.65148
[36] Orlov, A.I., Interval statistics, Interval comput., 1, 3, 44-52, (1992) · Zbl 0829.65140
[37] Pesonen, J.; Hyvonen, E., Interval approach challenges Monte Carlo simulation, Reliable comput., 2, 2, 155-160, (1996) · Zbl 0853.65005
[38] Ralescu, D.A., A generalization of the representation theorem, Fuzzy sets and systems, 51, 309-311, (1992) · Zbl 0793.04006
[39] Rocha, L.M.; Kreinovich, V.; Kearfott, R.B., Computing uncertainty in interval based sets, (), 337-380 · Zbl 0843.68114
[40] J. Stolfi, M.V.A. Andrade, J.L.D. Comba, R. Van Iwaarden, Affine arithmetic: a correlation-sensitive variant of interval arithmetic, http://www.dcc.unicamp.br/ stolfi/E.../projects/affine-arith
[41] Sunaga, T., Theory of an interval algebra and its application to numerical analysis, RAAG mem., 2, 28-46, (1958) · Zbl 0176.13201
[42] J.A. Tupper, Graphing equations with generalized interval arithmetic, Masters Thesis, Graduate Department of Computer Science, University of Toronto, 1996.
[43] Warmus, M., Calculus of approximations, Bull. sci. L’acad. Pol. sci., Cl. III-15, 5, 253-259, (1956) · Zbl 0071.12503
[44] Williamson, R.C.; Downs, T., Probabilistic arithmetic. I. numerical methods for calculating convolutions and dependency bounds, Internat. J. approximate reasoning, 4, 89-158, (1990) · Zbl 0703.65100
[45] Young, R.C., The algebra of many-valued quantities, Math. ann., 31, 260-290, (1931) · JFM 57.1373.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.