×

Does the tachyon matter? (English) Zbl 1014.81045

Summary: We study time-dependent solutions of Einstein-Maxwell gravity in four dimensions coupled to tachyon matter – the Dirac-Born-Infeld Lagrangian that provides an effective description of a decaying tachyon on an unstable D-brane in string theory. Asymptotically, the solutions are similar to the recently studied space-like brane solutions and carry \(S\)-brane charge. They do not break the Lorentzian \(R\)-symmetry. We study tachyon matter as a probe in such a background and analyze its backreaction. For early/late times, the tachyon field has a constant energy density and vanishing pressure as in flat space. On the other hand, at intermediate times, the energy density of the tachyon diverges and produces a space-like curvature singularity.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C22 Einstein-Maxwell equations
83E30 String and superstring theories in gravitational theory
81R40 Symmetry breaking in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gutperle, M.; Strominger, A., J. High Energy Phys., 0204, 018 (2002)
[2] Sen, A., J. High Energy Phys., 0204, 048 (2002)
[3] A. Sen, Tachyon matter, available at; A. Sen, Tachyon matter, available at
[4] A. Sen, Field theory of tachyon matter, available at; A. Sen, Field theory of tachyon matter, available at · Zbl 1083.81578
[5] Sugimoto, S.; Terashima, S., J. High Energy Phys., 0207, 025 (2002)
[6] C. M. Chen, D. V. Gal’tsov, and, M. Gutperle, S-brane solutions in supergravity theories, available at; C. M. Chen, D. V. Gal’tsov, and, M. Gutperle, S-brane solutions in supergravity theories, available at
[7] Kruczenski, M.; Myers, R. C.; Peet, A. W., J. High Energy Phys., 0205, 039 (2002)
[8] Gibbons, G. W., Phys. Lett. B, 537, 1 (2002)
[9] M. Fairbairn, and, M. H. Tytgat, Inflation from a tachyon fluid?, available at; M. Fairbairn, and, M. H. Tytgat, Inflation from a tachyon fluid?, available at
[10] Mukohyama, S., Phys. Rev. D, 66, 024009 (2002)
[11] A. Feinstein, Power-law inflation from the rolling tachyon, available at; A. Feinstein, Power-law inflation from the rolling tachyon, available at
[12] Padmanabhan, T., Phys. Rev. D, 66, 021301 (2002)
[13] Shiu, G.; Wasserman, I., Phys. Lett. B, 541, 6 (2002)
[14] G. Shiu, S. H. Tye, and, I. Wasserman, Rolling tachyon in brane world cosmology from superstring field theory, available at; G. Shiu, S. H. Tye, and, I. Wasserman, Rolling tachyon in brane world cosmology from superstring field theory, available at
[15] Grojean, C.; Quevedo, F.; Tasinato, G.; Zavala C., I., J. High Energy Phys., 108, 005 (2001)
[16] C. P. Burgess, F. Quevedo, S. J. Rey, G. Tasinato, and, C. Zavala, Cosmological spacetimes from negative tension brane backgrounds, available at; C. P. Burgess, F. Quevedo, S. J. Rey, G. Tasinato, and, C. Zavala, Cosmological spacetimes from negative tension brane backgrounds, available at
[17] A. Sen, Non-BPS states and branes in string theory, available at; A. Sen, Non-BPS states and branes in string theory, available at · Zbl 1043.81672
[18] Billo, M.; Craps, B.; Roose, F., J. High Energy Phys., 9906, 033 (1999)
[19] Garousi, M. R., Nucl. Phys. B, 584, 284 (2000)
[20] Bergshoeff, E. A.; de Roo, M.; de Wit, T. C.; Eyras, E.; Panda, S., J. High Energy Phys., 0005, 009 (2000)
[21] Takayanagi, T.; Terashima, S.; Uesugi, T., J. High Energy Phys., 103, 019 (2001)
[22] Gibbons, G. W.; Hori, K.; Yi, P., Nucl. Phys. B, 596, 136 (2001)
[23] N. Moeller, and, B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, available at; N. Moeller, and, B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons, available at
[24] A. Sen, Time evolution in open string theory, available at; A. Sen, Time evolution in open string theory, available at
[25] Horowitz, G. T.; Myers, R. C., Gen. Rel. Grav., 27, 915 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.