×

zbMATH — the first resource for mathematics

Nodal high-order methods on unstructured grids. I: Time-domain solution of Maxwell’s equations. (English) Zbl 1014.78016
The paper presents a high-order convergent method for the solution of the time-dependent Maxwell equations in geometrically complex domains. The spatial discretization on the unstructured tetrahedral mesh uses a high order nodal basis of multivariate Lagrange polynomials. The discrete equations are satisfied in a discontinuous Galerkin-Petrov form with the boundary and transmission conditions enforced weakly through a penalty term. The authors prove stability and convergence of the semidiscrete approximation to Maxwell’s equations and establish an error estimate of at most linear growth in time. The results can be applied to the solution of linear conservation laws. The authors present a number of numerical examples to verify the theoretical results and to illustrate the efficiency and robustness of the method when solving benchmark problems in computational electromagnetics. Problems of the efficient implementation and parallel performance are discussed.

MSC:
78M25 Numerical methods in optics (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Software:
BLAS; MPI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kreiss, H.O; Oliger, J, Comparison of accurate methods for the integration of hyperbolic problems, Tellus, 24, 199-215, (1972)
[2] Patera, A.T, A spectral element method for fluid mechanics: laminar flow in a channel expansion, J. comput. phys., 54, 468-488, (1984) · Zbl 0535.76035
[3] Korczak, K.Z; Patera, A.T, An isoparametric spectral element method for solution of the navier – stokes equations in complex geometries, J. comput. phys., 62, 361-382, (1986) · Zbl 0581.76036
[4] Canuto, C; Hussaini, M.Y; Quarteroni, A; Zang, T.A, spectral methods in fluid dynamics, (1988), Springer-Verlag New York · Zbl 0658.76001
[5] Kopriva, D.A, A spectral multidomain method for the solution of hyperbolic systems, Appl. numer. math., 2, 221-241, (1986) · Zbl 0601.76087
[6] Kopriva, D.A, Computation of hyperbolic equations on complicated domains with patched and overset Chebyshev grids, SIAM J. sci. stat. comput., 10, 120-132, (1989) · Zbl 0724.65092
[7] Quarteroni, A, Domain decomposition methods for systems of conservation laws: spectral collocation approximations, SIAM J. sci. stat. comput., 11, 1029-1052, (1990) · Zbl 0711.65082
[8] Kopriva, D.A, Multidomain spectral solution of the Euler gas-dynamics equations, J. comput. phys., 96, 428-450, (1991) · Zbl 0726.76077
[9] Giannakouros, J.G; Karniadakis, G.E, Spectral element-FCT method for the compressible Euler equations, J. comput. phys., 115, 65-85, (1994) · Zbl 0811.76058
[10] Hesthaven, J.S, A stable penalty method for the compressible navier – stokes equations. III. multidimensional domain decomposition schemes, SIAM J. sci. comput., 20, 62-93, (1999) · Zbl 0957.76059
[11] Yang, B; Gottlieb, D; Hesthaven, J.S, Spectral simulations of electromagnetic wave scattering, J. comput. phys., 134, 216-230, (1997) · Zbl 0883.65098
[12] Yang, B; Hesthaven, J.S, A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution, IEEE trans. ante. prop., 47, 132-141, (1999)
[13] Hesthaven, J.S; Dinesen, P.G; Lynov, J.P, Spectral collocation time-domain modeling of diffractive optical elements, J. comput. phys., 155, 287-306, (1999) · Zbl 0956.78020
[14] D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini, Discontinuous spectral element approximation of Maxwell’s equations. In Discontinuous Galerkin Methods: Theory, Computation and Applications, edited by B. Cockburn, G. E. Karniadakis, and C. W. Shu, Lecture Notes in Computational Science and Engineering Springer-Verlag, New York, 2000, Vol. 11, pp. 355-362. · Zbl 0957.78023
[15] Yang, B; Hesthaven, J.S, Multidomain pseudospectral computation of maxwells equations in 3-D general curvilinear coordinates, Appl. numer. math., 33, 281-289, (2000) · Zbl 0973.78006
[16] Sherwin, S.J; Karniadakis, G.E, A new triangular and tetrahedral basis for high-order finite element methods, Int. J. numer. methods, 38, 3775-3802, (1995) · Zbl 0837.73075
[17] Sherwin, S.J; Karniadakis, G.E, Tetrahedral hp finite elements: algorithms and flow simulations, J. comput. phys., 124, 14-45, (1996) · Zbl 0847.76038
[18] Lomtev, I; Quillen, C.B; Karniadakis, G.E, Spectral/hp methods for viscous compressible flows on unstructured 2D meshes, J. comput. phys., 144, 325-357, (1998) · Zbl 0929.76095
[19] Warburton, T; Karniadakis, G.E, A discontinuous Galerkin method for the viscous MHD equations, J. comput. phys., 152, 608-641, (1999) · Zbl 0954.76051
[20] Warburton, T; Lomtev, I; Du, Y; Sherwin, S; Karniadakis, G.E, Galerkin and discontinuous Galerkin spectral/hp methods, Comput. methods appl. mech. engrg., 175, 343-359, (1999) · Zbl 0924.76078
[21] Karniadakis, G.E; Sherwin, S.J, spectral/hp element methods for CFD, (1999), Clarendon Press Oxford
[22] Atkins, H; Shu, C.W, Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations, Aiaa j., 36, 775-782, (1998)
[23] Cockburn, B; Karniadakis, G.E; Shu, C.-W, discontinuous Galerkin methods: theory, computation and applications, (2000), Springer-Verlag New York
[24] Babuška, I; Suri, M, The hp-version of the finite element method with quasiuniform meshes, Math. model. numer. anal., 21, 199-238, (1987) · Zbl 0623.65113
[25] Schwab, C, p- and hp-finite element methods. theory and applications in solid and fluid mechanics, (1998), Clarendon Press Oxford · Zbl 0910.73003
[26] Hesthaven, J.S, Spectral penalty methods, Appl. numer. math., 33, 23-41, (2000) · Zbl 0964.65114
[27] Carpenter, M.H; Gottlieb, D, Spectral methods on arbitrary grids, J. comput. phys., 129, 74-86, (1996) · Zbl 0862.65054
[28] Hesthaven, J.S; Gottlieb, D, Stable spectral methods for conservation laws on triangles with unstructured grids, Comput. methods appl. mech. engrg., 175, 361-381, (1999) · Zbl 0924.76080
[29] Hesthaven, J.S; Teng, C.H, Stable spectral methods on tetrahedral elements, SIAM J. sci. comput., 21, 2352-2380, (2000) · Zbl 0959.65112
[30] T. Warburton, and, J. S. Hesthaven, Nodal high-order methods on unstructured grids. II. Systems of nonlinear conservation laws, J. Comput. Phys, in preparation. · Zbl 1014.78016
[31] Chen, Q; Babuška, I, The optimal symmetrical points for polynomial interpolation of real functions in a tetrahedron, Comput. methods appl. mech. engrg., 137, 89-94, (1996) · Zbl 0877.65004
[32] Mohammadian, A.H; Shankar, V; Hall, W.F, Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure, Comput. phys. comm., 68, 175-196, (1991)
[33] Babuška, I; Aziz, A.K, On the angle condition in the finite element method, SIAM J. numer. anal., 13, 214-226, (1976) · Zbl 0324.65046
[34] Ciarlet, P.G, the finite element method for elliptic problems, (1978) · Zbl 0445.73043
[35] Ditkowski, A, bounded-error finite difference schemes for initial boundary value problems on complex domains, (1997), Tel-Aviv UniversityDepartment of Applied Mathematics, School of Mathematical Sciences Tel-Aviv
[36] Ditkowski, A; Dridi, K; Hesthaven, J.S, Convergent Cartesian grid methods for maxwells equations in complex geometries, J. comput. phys., 170, 39-80, (2001) · Zbl 1053.78021
[37] E. Suli, C. Schwab, and P. Houston, hp-DGFEM for partial differential equations with nonnegative characteristic form, in Discontinuous Galerkin Methods. Theory, Computation and Applications, edited by B. Cockburn, G. E. Karniadakis, and C. W. Shu, Lecture Notes in Computational Science and Engineering Springer-Verlag, Berlin, 2000, Vol. 11, pp. 221-230. · Zbl 0946.65102
[38] M. H. Carpenter, and, C. A. Kennedy, Fourth order 2N-storage Runge-Kutta scheme, NASA-TM-109112, NASA Langley Research Center, VA, 1994.
[39] Abarbanel, S; Gottlieb, D, On the construction and analysis of absorbing layers in CEM, Appl. numer. math., 27, 331-340, (1998) · Zbl 0924.35160
[40] Taflove, A, Computational electrodynamics: the finite-difference time-domain method, (1995), Artech House Boston · Zbl 0840.65126
[41] Bowman, J.J; Senior, T.B.A; Ushlenghi, P.L, electromagnetic and acoustic scattering by simple shapes, (1969), North-Holland Amsterdam
[42] Barber, P.W; Hill, S.C, light scattering by particles: computational methods, (1990), World Scientific
[43] Volakis, J.L, Benchmark plate radar targets for the validation of computational electromagnetics programs, IEEE ant. prop. mag., 34, 52-56, (1992)
[44] J. Dongarra, J. Du Croz, I. Duff, and, S. Hammerling, A set of level 3 basic linear algebra subprograms (BLAS), available at, http://www.netlib.org/blas/blas3-paper.ps. · Zbl 0900.65115
[45] Snir, M; Otto, S; Huss-Lederman, S; Walker, D; Dongarra, J, MPI: the complete reference, (1996), MIT Press Cambridge
[46] Karypis, G; Kumar, V, Multilevel k-way partitioning scheme for irregular graphs, J. para. distrib. comput., 48, 96-129, (1998)
[47] Saad, Y, iterative methods for sparse linear systems, (2000)
[48] Douglas, C.C; Haase, G; Hu, J; Kowarschik, M; Rüde, U; Weiss, C, Portable memory hierarchy techniques for PDE solvers: part II, SIAM news, 33, (2000)
[49] Biswas, R; Devine, K.D; Flaherty, J; Parallel, Adaptive finite element methods for conservation laws, Appl. numer. math., 14, 255-283, (1994) · Zbl 0826.65084
[50] Proriol, J, Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. acad. sci. Paris, 257, 2459-2461, (1957) · Zbl 0080.05204
[51] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in Theory and Application of Special Functions, edited by R. A. AskeyAcademic Press, New York, 1975, pp. 435-495.
[52] Dubiner, M, Spectral methods on triangles and other domains, J. sci. comput., 6, 345-390, (1991) · Zbl 0742.76059
[53] Szegö, G, orthogonal polynomials, (1939), Am. Math. Soc Providence
[54] Davis, P.J; Rabinowitz, P, methods of numerical integration, (1975), Academic Press New York
[55] Stroud, A.H, approximate calculation of multiple integrals, (1971), Prentice-Hall New Jersey · Zbl 0379.65013
[56] Cools, R; Rabinowitz, P, Monomial cubature rules Since stroud: A compilation, J. comput. appl. math., 48, 309-326, (1993) · Zbl 0799.65027
[57] Cools, R, Monomial cubature rules Since stroud: A compilation—part 2, J. comput. appl. math., 112, 21-27, (1999) · Zbl 0954.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.