×

zbMATH — the first resource for mathematics

Bootstraps for time series. (English) Zbl 1013.62048
Summary: We review and compare block, sieve and local bootstraps for time series and thereby illuminate theoretical aspects of the procedures as well as their performance on finite-sample data. Our view is selective with the intention of providing a new and fair picture of some particular aspects of bootstrapping time series. The generality of the block bootstrap is contrasted with sieve bootstraps. We discuss implementational advantages and disadvantages. We argue that two types of sieve often outperform the block method, each of them in its own important niche, namely linear and categorical processes. Local bootstraps, designed for nonparametric smoothing problems, are easy to use and implement but exhibit in some cases low performance.

MSC:
62G09 Nonparametric statistical resampling methods
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Software:
bootstrap
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ACCOLA, C. (1998). Bootstrap für die bedingte Erwartung bei Zeitreihen. Diploma thesis, ETH Zürich. (In German.)
[2] ANGO NZE, P., BÜHLMANN, P. and DOUKHAN, P. (2002). Weak dependence bey ond mixing and asy mptotics for nonparametric regression. Ann. Statist. 30 · Zbl 1012.62037
[3] BERAN, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74 457-468. JSTOR: · Zbl 0663.62045
[4] BICKEL, P. J. and BÜHLMANN, P. (1997). Closure of linear processes. J. Theoret. Probab. 10 445-479. · Zbl 0890.60033
[5] BICKEL, P. J. and BÜHLMANN, P. (1999). A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413-446. · Zbl 0954.62102
[6] BOSE, A. (1988). Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16 1709-1722. · Zbl 0653.62016
[7] BRILLINGER, D. R. (1997). Random process methods and environmental data: The 1996 Hunter Lecture. Environmetrics 8 269-281.
[8] BÜHLMANN, P. (1994). Blockwise bootstrapped empirical process for stationary sequences. Ann. Statist. 22 995-1012. · Zbl 0806.62032
[9] BÜHLMANN, P. (1995). The blockwise bootstrap for general empirical processes of stationary sequences. Stochastic Process. Appl. 58 247-265. · Zbl 0841.62036
[10] BÜHLMANN, P. (1997). Sieve bootstrap for time series. Bernoulli 3 123-148. · Zbl 0874.62102
[11] BÜHLMANN, P. (1998). Sieve bootstrap for smoothing in nonstationary time series. Ann. Statist. 26 48-83. · Zbl 0934.62039
[12] BÜHLMANN, P. (2002). Sieve bootstrap with variable length Markov chains for stationary categorical time series. J. Amer. Statist. Assoc. · Zbl 1073.62551
[13] BÜHLMANN, P. and KÜNSCH, H. R. (1995). The blockwise bootstrap for general parameters of a stationary time series. Scand. J. Statist. 22 35-54. · Zbl 0820.62078
[14] BÜHLMANN, P. and KÜNSCH, H. R. (1999). Block length selection in the bootstrap for time series. Comput. Statist. Data Anal. 31 295-310. · Zbl 1061.62528
[15] BÜHLMANN, P. and Wy NER, A. J. (1999). Variable length Markov chains. Ann. Statist. 27 480-513. · Zbl 0983.62048
[16] CARLSTEIN, E. (1986). The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Statist. 14 1171-1179. · Zbl 0602.62029
[17] CARLSTEIN, E., DO, K.-A., HALL, P., HESTERBERG, T. and KÜNSCH, H. R. (1998). Matched-block bootstrap for dependent data. Bernoulli 4 305-328. · Zbl 0920.62106
[18] CHOI, E. and HALL, P. (2000). Bootstrap confidence regions computed from autoregressions of arbitrary order. J. Roy. Statist. Soc. Ser. B 62 461-477. JSTOR: · Zbl 0966.62027
[19] DAHLHAUS, R. and JANAS, D. (1996). A frequency domain bootstrap for ratio statistics in time series analysis. Ann. Statist. 24 1934-1963. · Zbl 0867.62072
[20] DAVISON, A. C. and HALL, P. (1993). On Studentizing and blocking methods for implementing the bootstrap with dependent data. Austral. J. Statist. 35 215-224. · Zbl 0791.62045
[21] DAVISON, A. C. and HINKLEY, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Univ. Press. · Zbl 0886.62001
[22] EFRON, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26. · Zbl 0406.62024
[23] EFRON, B. (1987). Better bootstrap confidence intervals. J. Amer. Statist. Assoc. 82 171-185. JSTOR: · Zbl 0622.62039
[24] EFRON, B. and TIBSHIRANI, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, London. · Zbl 0835.62038
[25] FRANKE, J. and HÄRDLE, W. (1992). On bootstrapping kernel spectral estimates. Ann. Statist. 20 121-145. · Zbl 0757.62048
[26] FRANKE, J., KREISS, J.-P., MAMMEN, E. and NEUMANN, M.
[27] H. (1998). Properties of the nonparametric autoregressive bootstrap. Preprint, Univ. Kaiserslautern.
[28] FREEDMAN, D. A. (1984). On bootstrapping two-stage leastsquares estimates in stationary linear models. Ann. Statist. 12 827-842. · Zbl 0542.62051
[29] GÖTZE, F. and KÜNSCH, H. R. (1996). Second-order correctness of the blockwise bootstrap for stationary observations. Ann. Statist. 24 1914-1933. · Zbl 0906.62040
[30] GRENANDER, U. (1981). Abstract Inference. Wiley, New York. · Zbl 0505.62069
[31] HALL, P. (1985). Resampling a coverage pattern. Stochastic Process. Appl. 20 231-246. · Zbl 0587.62081
[32] HALL, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14 1431-1452. · Zbl 0611.62047
[33] HALL, P. (1987). On the bootstrap and continuity correction. J. Roy. Statist. Soc. Ser. B 49 82-89. JSTOR: · Zbl 0629.62045
[34] HALL, P., HOROWITZ, J. L. and JING, B.-Y. (1995). On blocking rules for the bootstrap with dependent data. Biometrika 82 561-574. JSTOR: · Zbl 0830.62082
[35] HALL, P., JING, B.-Y. and LAHIRI, S. N. (1998). On the sampling window method under long range dependence. Statist. Sinica 8 1189-1204. · Zbl 0919.62106
[36] KREISS, J.-P. (1992). Bootstrap procedures for AR()-processes. In Bootstrapping and Related Techniques (K.-H. Jöckel, G. Rothe and W. Sendler, eds.) 107-113. Springer, Berlin.
[37] KREISS, J.-P. and FRANKE, J. (1992). Bootstrapping stationary autoregressive moving-average models. J. Time Ser. Anal. 13 297-317. · Zbl 0787.62092
[38] KÜNSCH, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1241. · Zbl 0684.62035
[39] LAHIRI, S. N. (1993). On the moving block bootstrap under long range dependence. Statist. Probab. Lett. 18 405-413. · Zbl 0793.62023
[40] LAHIRI, S. N. (1995). On the asy mptotic behaviour of the moving block bootstrap for normalized sums of heavy-tail random variables. Ann. Statist. 23 1331-1349. · Zbl 0841.62037
[41] LAHIRI, S. N. (1996). On Edgeworth expansion and moving block bootstrap for Studentized M-estimators in multiple linear regression models. J. Multivariate Anal. 56 42-59. · Zbl 0864.62028
[42] LAHIRI, S. N. (1999). Theoretical comparisons of block bootstrap methods. Ann. Statist. 27 386-404. · Zbl 0945.62049
[43] LÉGER, C., POLITIS, D. N. and ROMANO, J. P. (1992). Bootstrap technology and applications. Technometrics 34 378-398. · Zbl 0850.62367
[44] LI, H. and MADDALA, G. S. (1996). Bootstrapping time series models. Econometric Rev. 15 115-158. · Zbl 0855.62074
[45] LOH, W. (1987). Calibrating confidence coefficients. J. Amer. Statist. Assoc. 82 155-162. JSTOR: · Zbl 0608.62057
[46] MARTIN, R. D. and YOHAI, V. J. (1986). Influence functionals for time series (with discussion). Ann. Statist. 14 781-855. · Zbl 0608.62042
[47] NEUMANN, M. H. (1998). Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations. Ann. Statist. 26 2014-2048. · Zbl 0930.62038
[48] NEUMANN, M. H. and KREISS, J.-P. (1998). Regression-ty pe inference in nonparametric autoregression. Ann. Statist. 26 1570-1613. · Zbl 0935.62049
[49] PAPARODITIS, E. and POLITIS, D. N. (1999). The local bootstrap for periodogram statistics. J. Time Ser. Anal. 20 193-222. · Zbl 0938.62051
[50] PAPARODITIS, E. and POLITIS, D. N. (2000). The local bootstrap for kernel estimators under general dependence conditions. Ann. Inst. Statist. Math. 52 139-159. · Zbl 0959.62034
[51] PAPARODITIS, E. and POLITIS, D. N. (2001). Tapered block bootstrap. Biometrika 88 1105-1119. JSTOR: · Zbl 0987.62027
[52] PAPARODITIS, E. and POLITIS, D. N. (2002). The local bootstrap for Markov processes. J. Statist. Plann. Inference. · Zbl 1016.62041
[53] PELIGRAD, M. (1998). On the blockwise bootstrap for empirical processes for stationary sequences. Ann. Probab. 26 877-901. · Zbl 0932.62055
[54] POLITIS, D. N. and ROMANO, J. P. (1992). A general resampling scheme for triangular array s of -mixing random variables with application to the problem of spectra density estimation. Ann. Statist. 20 1985-2007. · Zbl 0776.62070
[55] POLITIS, D. N. and ROMANO, J. P. (1993). Nonparametric resampling for homogeneous strong mixing random fields. J. Multivariate Anal. 47 301-328. · Zbl 0795.62087
[56] POLITIS, D. N. and ROMANO, J. P. (1994a). The stationary bootstrap. J. Amer. Statist. Assoc. 89 1303-1313. JSTOR: · Zbl 0814.62023
[57] POLITIS, D. N. and ROMANO, J. P. (1994b). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist. 22 2031-2050. · Zbl 0828.62044
[58] POLITIS, D. N., ROMANO, J. P. and WOLF, M. (1999). Subsampling. Springer, New York. RADULOVI Ć, D. (1996a). The bootstrap of the mean for strong mixing sequences under minimal conditions. Statist. Probab. Lett. 28 65-72. RADULOVI Ć, D. (1996b). The bootstrap for empirical processes based on stationary observations. Stochastic Process. Appl. 65 259-279. · Zbl 0931.62035
[59] RADULOVI Ć, D. (1998). The bootstrap of empirical processes for -mixing sequences. In High Dimensional Probability (E. Eberlein, M. Hahn and M. Talagrand, eds.) 315-330. Birkhäuser, Basel. · Zbl 0901.62060
[60] RAJARSHI, M. B. (1990). Bootstrap in Markov-sequences based on estimates of transition density. Ann. Inst. Statist. Math. 42 253-268. · Zbl 0714.62036
[61] RISSANEN, J. (1983). A universal data compression sy stem. IEEE Trans. Inform. Theory IT-29 656-664. · Zbl 0521.94010
[62] ROBINSON, P. M. (1983). Nonparametric estimators for time series. J. Time Series Anal. 4 185-207. · Zbl 0544.62082
[63] SHAO, J. and TU, D. (1995). The Jackknife and Bootstrap. Springer, New York. · Zbl 0947.62501
[64] SHIBATA, R. (1980). Asy mptotically efficient selection of the order of the model for estimating parameters of a linear process. Ann. Statist. 8 147-164. · Zbl 0425.62069
[65] WOODROOFE, M. and JHUN, M. (1989). Singh’s theorem in the lattice case. Statist. Probab. Lett. 7 201-205. · Zbl 0662.62018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.