×

zbMATH — the first resource for mathematics

Multiscale lattice Boltzmann schemes with turbulence modeling. (English) Zbl 1012.76073
Summary: The viability of a multiscale lattice Boltzmann schemes for the numerical simulation of turbulent flows is discussed and numerically demonstrated for turboaxial machine applications. We propose an extension of boundary-fitting formulas based on wall functions, which enables the efficient computation of turbulent flows in complex curvilinear geometry using a simple Cartesian grid. Examples of two-dimensional turbulent flows in an axial compressor cascade are presented.

MSC:
76M28 Particle methods and lattice-gas methods
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] McNamara, G.; Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. rev. lett., 61, 2332, (1988)
[2] Higuera, F.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, Europhys. lett., 9, 345, (1989)
[3] Qian, Y.H.; d’Humieres, D.; Lallemand, P., Lattice BGK models for navier – stokes equation, Europhys. lett., 17, 479, (1992) · Zbl 1116.76419
[4] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. rep., 222, 145, (1992)
[5] Chen, S.; Wang, Z.; Shan, X.; Doolen, G.D., Lattice Boltzmann computational fluid dynamics in three dimensions, J. stat. phys., 68, 379, (1992) · Zbl 0925.76516
[6] Succi, S.; Amati, G.; Benzi, R., Challenges in lattice Boltzmann computing, J. stat. phys., 81, (1995) · Zbl 1106.82376
[7] Amati, G.; Succi, S.; Benzi, R., Turbulent channel flow simulation using a coarse-grained extension of the lattice Boltzmann method, Fluid dyn. res., 19, 289, (1997)
[8] Nannelli, F.; Succi, S., The lattice Boltzmann equation on irregular lattices, J. stat. phys., 68, 401, (1992) · Zbl 0925.82036
[9] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice Boltzmann method. part 1. nonuniform mesh grids, J. comput. phys., 129, 357, (1996) · Zbl 0868.76068
[10] Filippova, O.; Hänel, D., Boundary-Fitting and local grid refinement for lattice-BGK models, Int. J. mod. phys. C, 9, 1271, (1998)
[11] Ladd, A.J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation, J. fluid mech., 271, 285, (1994) · Zbl 0815.76085
[12] Filippova, O.; Hänel, D., Lattice-BGK model for low Mach number combustion, Int. J. mod. phys. C, 9, 1439, (1998)
[13] Filippova, O.; Hänel, D., A novel lattice-BGK approach for low Mach number combustion, J. comput. phys., 158, 139, (2000) · Zbl 0963.76072
[14] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. comput. phys., 147, 219, (1998) · Zbl 0917.76061
[15] Mazzocco, F.; Arrighetti, C.; Bella, G.; Spagnoli, L.; Succi, S., Multiscale lattice Boltzmann schemes: A preliminary application to axial turbomachine flow simulations, Int. J. mod. phys. C, 11, 233, (2000)
[16] Filippova, O.; Hänel, D., Acceleration of lattice BGK schemes with grid refinement, J. comput. phys., 165, 407, (2000) · Zbl 0990.76070
[17] Zou, Q.; Hou, S.; Chen, S.; Doolen, G., An improved incompressible lattice Boltzmann model for time-independent flows, J. stat. phys., 81, 35, (1995) · Zbl 1106.82366
[18] Teixeira, C., Incorporating turbulence models into the lattice-Boltzmann method, Int. J. mod. phys. C, 9, 1159, (1998)
[19] Succi, S.; Chen, H.; Teixeira, C.; Bella, G.; De Maio, A.; Molvig, K., An integer lattice realization of a Lax scheme for transport processes in multiple component fluid flows, J. comp. phys., 152, 493, (1999) · Zbl 0955.76062
[20] Launder, B.E.; Spalding, D.B., The numerical computation of turbulent flows, Comput. methods appl. mech. eng., 3, 269, (1974) · Zbl 0277.76049
[21] Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speciale, C.G., Development of turbulence models for shear flows by a double expansion technique, Phys. fluids A, 4, 1510, (1992) · Zbl 0762.76044
[22] J. P. Gostelow, Potential flow through cascades–a comparison between exact and approximate solutions, Aeronautical Research Council, CP 807, 1965.
[23] Chen, H.; Teixeira, C.; Molvig, K., Realization of fluid boundary conditions via discrete Boltzmann dynamics, Int. J. mod. phys. C, 9, 1281, (1998)
[24] Hou, S.; Sterling, J.; Chen, S.; Doolen, G.D., A lattice Boltzmann subgrid model for high Reynolds number flows, Field inst. comm., 6, 151, (1996) · Zbl 0923.76275
[25] Baskharone, E.; Hamed, A., A new approach in cascade flow analysis using the finite element method, Aiaa j., 19, 65, (1981) · Zbl 0454.76008
[26] Pinkerton, R.M., Calculated and measured pressure distributions over the midspan sections of the NACA 4412 airfoil, (1936)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.