×

zbMATH — the first resource for mathematics

Growth and fluctuations of personal income. (English) Zbl 1011.91069
Summary: Pareto’s law states that the distribution of personal income obeys a power-law in the high income range. Its dynamical nature has been little studied hitherto, mostly due to the lack of empirical work. Using an exhaustive list of taxpayers in Japan for two consecutive years, when the economy was relatively stable, we report here that the law is a consequence from universal distribution of the growth rate of income and approximate time-reversal symmetry of incomes in the successive years. We also find a relation between positive and negative growth rates that shows good agreement with the data.

MSC:
91B62 Economic growth models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pareto, V., Le cours d’économie politique, (1897), Macmillan London
[2] Gini, C., Biblioteca delli’ecoomista, 20, (1922)
[3] W.W. Badger, in: B.J. West (Ed.), Mathematical Models as a Tool for the Social Science, Gordon and Breach, New York, 1980, pp. 87-120.
[4] Champernowne, D.G.; Cowell, F.A., Economic inequality and income distribution, (1998), Cambridge University Press Cambridge
[5] Aoyama, H.; Souma, W.; Nagahara, Y.; Okazaki, M.P.; Takayasu, H.; Takayasu, M., Fractals, 8, 293, (2000)
[6] Souma, W., Fractals, 9, 463, (2001)
[7] Drăgulescu, A.; Yakovenko, V.M., Physica A, 299, 213, (2001)
[8] Gibrat, R., LES inégalités économiques, (1932), Sirey Paris
[9] Champernowne, D.G., Econometric J., 63, 318, (1953)
[10] Mandelbrot, B.B., Econometrica, 29, 517, (1961)
[11] Montroll, E.W.; Shlesinger, M.F., J. stat. phys., 32, 209, (1983)
[12] Levy, M.; Solomon, S., Int. J. mod. phys. C, 7, 595, (1996)
[13] Bouchaud, J.-P.; Mézard, M., Physica A, 282, 536, (2000)
[14] S. Solomon, P. Richmond, in: A. Kirman, J.-B. Zimmermann (Eds.), Economics with Heterogeneous Interacting Agents, Lecture notes in Economics and Mathematical Systems, Vol. 503, Springer, Berlin, 2001, pp. 141-145.
[15] Kesten, H., Acta math., 131, 207, (1973)
[16] Sornette, D., Critical phenomena in natural sciences, (2000), Springer Heidelberg · Zbl 0977.82001
[17] Sutton, J., J. econ. lit., 35, 40, (1997)
[18] Aoki, M., Modeling aggregate behaviour and fluctuations in economics, (2002), Cambridge University Press New York
[19] Ijiri, Y.; Simon, H.A., Skew distributions and the sizes of business firms, (1977), North-Holland New York · Zbl 0392.90003
[20] Stanley, M.H.R.; Amaral, L.A.N.; Buldyrev, S.V.; Havlin, S.; Leschhorn, H.; Maass, P.; Salinger, M.A.; Stanley, H.E., Nature, 379, 804, (1996)
[21] Amaral, L.A.N.; Buldyrev, S.V.; Havlin, S.; Salinger, M.A.; Stanley, H.E., Phys. rev. lett., 80, 1385, (1998)
[22] Okuyama, K.; Takayasu, M.; Takayasu, H., Physica A, 269, 125, (1999)
[23] M. Mizuno, M. Katori, H. Takayasu, M. Takayasu, in: H. Takayasu (Ed.), Empirical Science of Financial Fluctuations: The Advent of Econophysics, Springer, Tokyo, 2002, pp. 321-330.
[24] Axtell, R.L., Science, 293, 1818, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.