×

QCD event generators with next-to-leading order matrix-elements and parton showers. (English) Zbl 1010.81511

Summary: A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan processes is given for demonstrating a validity of this method.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Eur. Phys. J. C, 15, 1 (2000)
[2] CMS Technical Proposal, CERN/LHCC/94-38, 1994; CMS Technical Proposal, CERN/LHCC/94-38, 1994
[3] and references therein
[4] Frixione, S.; Webber, R. B., JHEP, 0206, 029 (2002)
[5] Fujimoto, J.; Ishikawa, T.; Jumbo, M.; Kaneko, T.; Kato, K.; Kawabata, S.; Kon, K.; Kuroda, M.; Kurihara, Y.; Shimizu, Y.; Tanaka, H.
[6] Yuasa, F.; Kurihara, Y.; Kawabata, S., Phys. Lett. B, 414, 178 (1997)
[7] Tanaka, H.; Kaneko, T.; Shimizu, Y., Comput. Phys. Commun., 64, 149 (1991)
[8] Tsuno, S.; Sato, K.; Fujimoto, J.; Ishikawa, T.; Kurihara, Y.; Odaka, S.; Abe, T.
[9] Sjöstrand, T., Comput. Phys. Commun., 82, 74 (1994)
[10] Nowak, M. A.; Praszalowicz, M., Ann. Phys., 166, 443 (1986), except one number of \(ρ^{(k)}_3\) in Table B.III. Our result is \(−103−51L+9L^212\) insted of \(−95−51L+9L^212\) in their table
[11] Bardeen, A.; Buras, A. J.; Duke, D. W.; Muta, T., Phys. Rev. B, 133, 1549 (1964)
[12] Denner, A.; Nierste, U.; Scharf, R., Nucl. Phys. B, 367, 637 (1991)
[13] Duplančić, G.; Nižić, B., Eur. Phys. J. C, 20, 357 (2001)
[14] Fleisher, J.; Jegerlehner, F.; Tarasov, O. V., Nucl. Phys. B, 566, 423 (2000)
[15] Binoth, T.; Guillet, J. Ph.; Heinrich, G., Nucl. Phys. B, 572, 361 (2000)
[16] Y. Kurihara, in preparation; Y. Kurihara, in preparation
[17] Harris, B. W.; Owens, J. F., Phys. Rev. D, 65, 094032 (2002)
[18] Marchesini, G.; Webber, B. R.; Abbiendi, G.; Knowles, I. G.; Seymour, M. H.; Stanco, L., Comput. Phys. Commun., 67, 465 (1992)
[19] Lai, H. L., Eur. Phys. J. C, 12, 375 (2000)
[20] Sjöstrand, T., Comput. Phys. Commun., 79, 503 (1994)
[21] Dokshitzer, Y. L., Sov. Phys. JETP, 46, 641 (1977)
[22] Tanaka, H.; Munehisa, T., Mod. Phys. Lett. A, 13, 1085 (1998)
[23] Lai, H. L., Eur. Phys. J. C, 12, 375 (2000)
[24] Kawabata, S., Comput. Phys. Commun., 88, 309 (1995)
[25] Negative weight treatment in [24]; Negative weight treatment in [24]
[26] Altarelli, G.; Ellis, R. K.; Martinelli, G., Nucl. Phys. B, 157, 461 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.