zbMATH — the first resource for mathematics

A one-loop test of string duality. (English) Zbl 1009.81541
Summary: We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J28 \(K3\) surfaces and Enriques surfaces
32J81 Applications of compact analytic spaces to the sciences
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T50 Anomalies in quantum field theory
Full Text: DOI arXiv
[1] Narain, K.; Narain, K.; Sarmadi, M.; Witten, E., A note on the toroidal compactification of heterotic string theory, Phys. lett. B, Phys. rev. D, 35, 369, (1987)
[2] Seiberg, N., Observations on the moduli space of superconformal field theories, Nucl. phys. B, 303, 286, (1988)
[3] P. Aspinwall and D. Morrison, String theory on K3 surfaces, DUK-TH-94-68, IASSNS-HEP-94/23.
[4] C.M. Hull and P.K. Townsend, Unity of superstring dualities, QMW-94-30, R/94/33. · Zbl 1156.83324
[5] C. Vafa, unpublished.
[6] Witten, E., String theory dynamics in various dimensions, Nucl. phys. B, 443, 85, (1995) · Zbl 0990.81663
[7] A. Sen, String-string duality conjecture in six dimensions and charged solitonic strings, hep-th/9504027. · Zbl 0982.81520
[8] J.A. Harvey and A. Strominger, The heterotic string is a soliton, hep-th/9504047. · Zbl 1076.81555
[9] A. Strominger, Massless black holes and conifolds in string theory, hep-th/950490 B. Greene, D. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, hep-th/9504145.
[10] Vafa, C., A stringy test of the fate of the conifold, Nucl. phys. B, 447, 252, (1995), preceding article in this issue · Zbl 1009.81542
[11] Witten, E., Global anomalies in string theory, () · Zbl 0643.53071
[12] Duff, M.J.; Minasian, R., Putting string/string duality to the test, Nucl. phys. B, 436, 507, (1995) · Zbl 1052.81583
[13] Callan, C.G.; Harvey, J.A.; Strominger, A., Worldsheet approach to heterotic instantons and solitons, Nucl. phys. B, 359, 611, (1991)
[14] Lerche, W.; Nilsson, B.E.W.; Schellekens, A.N.; Warner, N.P., Anomaly cancelling terms from the elliptic genus, Nucl. phys. B, 299, 91, (1988)
[15] Witten, E., Elliptic genera and quantum field theory, Commun. math. phys., 109, 525, (1987) · Zbl 0625.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.