×

zbMATH — the first resource for mathematics

Circular Tuscan-\(k\) arrays from permutation binomials. (English) Zbl 1009.05032
A new construction for Tuscan-\(k\) arrays is presented based on the construction of a series of set complete mappings. The construction is found from the study of permutation polynomials over finite fields.

MSC:
05B15 Orthogonal arrays, Latin squares, Room squares
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chou, Wun-Seng, Set-complete mappings on finite fields, (), 33-41 · Zbl 0792.11048
[2] Golomb, S.W., Algebraic constructions for costas arrays, J. combin. theory ser. A, 37, 13-21, (1984) · Zbl 0547.05020
[3] Golomb, S.W.; Etzion, T.; Taylor, H., Tuscan-k squares, Adv. appl. math., 10, 164-174, (1989) · Zbl 0675.05014
[4] Golomb, S.W.; Etzion, T.; Taylor, H., Polygonal path constructions for tuscan-k squares, Ars combin., 30, 97-140, (1990) · Zbl 0735.05014
[5] Golomb, S.W.; Moreno, O., On periodicity properties of costas arrays and a conjecture on permutation polynomials, IEEE trans. inform. theory, 42, 2252-2253, (1996) · Zbl 0877.94008
[6] Golomb, S.W.; Taylor, H., Tuscan squares—A new family of combinatorial designs, Ars combin. B, 20, 115-132, (1985) · Zbl 0629.05018
[7] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia of mathematics and its applications, 20, (1983), Addison-Wesley Reading
[8] Mollin, R.A.; Small, C., On permutation polynomials over finite fields, Internat. J. math. math. sci., 10, 535-544, (1987) · Zbl 0626.12015
[9] Small, C., Permutation binomials, Internat. J. math. math. sci., 13, 337-342, (1990) · Zbl 0702.11085
[10] Song, H.Y., On aspects of tuscan squares, (1991), University of Southern California
[11] Song, H.Y., On (n, k)-sequences, Discrete appl. math., 105, 183-192, (2000) · Zbl 0971.05032
[12] Song, H.Y.; Golomb, S.W., Generalized welch – costas sequences and their application to vatican arrays, (), 341-351 · Zbl 0805.94007
[13] Song, H.Y.; Dinitz, J.H., Tuscan squares, (), 480-484 · Zbl 0845.05023
[14] Taylor, H., Florentine rows or left-right shifted permutation matrices with cross-correlation values ⩽1, Discrete math., 93, 247-260, (1991) · Zbl 0758.05031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.