×

zbMATH — the first resource for mathematics

Topological amplitudes in string theory. (English) Zbl 1007.81522

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
11Z05 Miscellaneous applications of number theory
14H42 Theta functions and curves; Schottky problem
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Dixon, L.J.; Kaplunovsky, V.S.; Louis, J., Nucl. phys., B355, 649, (1991)
[2] Antoniadis, I.; Gava, E.; Narain, K.S., Nucl. phys., B383, 93, (1992)
[3] Cecotti, S.; Vafa, C.; Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.; Cecotti, S.; Vafa, C., Nucl. phys., Nucl. phys., Preprints HUTP-92/A044 and SISSA-167/92/EP, B386, 405, (1992)
[4] Louis, J.; Derendinger, J.-P.; Ferrara, S.; Kounnas, C.; Zwirner, F.; Cardoso, G.L.; Ovrut, B.A., (), Nucl. phys., Nucl. phys., B369, 351, (1992)
[5] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T.R., Nucl. phys., B407, 706, (1993)
[6] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Preprint HUTP-93/A008, (1993), hep-th/9302103
[7] Witten, E.; Eguchi, T.; Yang, S.-K., Commun. math. phys., Mod. phys. lett., A4, 1653, (1990)
[8] C. Vafa, private communication
[9] de Roo, M.; Van Holten, J.W.; de Wit, B.; Van Proeyen, A.; Bergshoeff, E.; de Roo, M.; de Wit, B., Nucl. phys., Nucl. phys., B182, 173, (1981)
[10] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, to appear.
[11] Seiberg, N., Nucl. phys., B303, 286, (1988)
[12] Cecotti, S.; Ferrara, S.; Girardello, L., Int. J. mod. phys., A4, 2475, (1989)
[13] Dixon, L.; Kaplunovsky, V.; Vafa, C., Nucl. phys., B294, 43, (1987)
[14] de Wit, B.; Lauwers, P.O.; van Proeyen, A.; Cremmer, E.; Kounnas, C.; Van Proeyen, A.; Derendinger, J.P.; Ferrara, S.; de Wit, B.; Girardello, L., Nucl. phys., Nucl. phys., B250, 385, (1985)
[15] Friedan, D.; Martinec, E.; Shenker, S., Nucl. phys., B271, 93, (1986)
[16] Verlinde, E.; Verlinde, H., Nucl. phys., B288, 357, (1987)
[17] Witten, E., Mirror manifolds and topological field theory, (), 37
[18] Boucher, W.; Friedan, D.; Kent, A.; Sen, A.; Banks, T.; Dixon, L.; Friedan, D.; Martinec, E., Phys. lett., Nucl. phys., Nucl. phys., B299, 613, (1987)
[19] Lerche, W.; Schellekens, A.N.; Warner, N.P.; Lechtenfeld, O.; Lerche, W., Phys. rep., Phys. lett., B227, 373, (1989)
[20] Lüst, D.; Theisen, S., Phys. lett., B227, 367, (1989)
[21] de Wit, B.; van Proeyen, A.; Ferrara, S.; Lüst, D.; Theisen, S., Nucl. phys., Phys. lett., B242, 39, (1990)
[22] Antoniadis, I.; Narain, K.S.; Taylor, T.R., Phys. lett., B267, 37, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.