×

zbMATH — the first resource for mathematics

Operations research games: A survey. (With comments and rejoinder). (English) Zbl 1006.91009
This research paper represents not only a research exposition. It is a well based scientific work concerning the role and place of games in the context of operations research. The authors produced a pertinent survey on the operations research cooperative games and this aim is valid for the present and the immediate future, especially in this field of knowledge. As the authors recognized, it is impossible to write a complete survey on the operations research games. But it is very important to do it in a version such as this, being based on a significant bibliography.

MSC:
91A12 Cooperative games
91-02 Research exposition (monographs, survey articles) pertaining to game theory, economics, and finance
90B30 Production models
90B35 Deterministic scheduling theory in operations research
90B10 Deterministic network models in operations research
90B05 Inventory, storage, reservoirs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aadland D. and Kolpin V. (1998). Shared irrigation cost: an empirical and axiomatic analysis.Mathematical Social Sciences 35, 203–218. · Zbl 0927.90080 · doi:10.1016/S0165-4896(97)00013-9
[2] Aarts H (1994). Minimum cost spanning tree games and set games. PhD thesis, University of Twente, Enschede, The Netherlands.
[3] Aarts H. and Driessen T. (1993). The irreducible core of a minimum cost spanning tree game.Zeitschrift für Operations Research (Now:Mathematical Methods of Operations Research) 38, 163–174. · Zbl 0806.90128
[4] Assad A. (1978). Multicommodity network flows – a survey.Networks 8, 37–91. · Zbl 0381.90040 · doi:10.1002/net.3230080107
[5] Aumann R. and Maschler M. (1985). Game theoretic analysis of a bankruptcy problem from the Talmud.Journal of Economic Theory 36, 195–213. · Zbl 0578.90100 · doi:10.1016/0022-0531(85)90102-4
[6] Balinsky M. and Gale D. (1990). On the core of assignment games. In: Leifman L. (ed.),Functional analysis, optimization and mathematical economics: a collection of papers dedicated to the memory of Leonid Vatalévich Kontorovich. Oxford University Press, 274–289.
[7] Bilbao M. (2000).Cooperative games on combinatorial structures. Kluwer Academic Publishers. · Zbl 0983.91013
[8] Bird C. (1976). On cost allocation for a spanning tree: a game theoretic approach.Networks 6, 335–350. · Zbl 0357.90083 · doi:10.1002/net.3230060404
[9] Bird G. (1981). Cores of monotonic linear production games.Mathematics of Operations Research 6, 420–423. · Zbl 0506.90095 · doi:10.1287/moor.6.3.420
[10] Bjørndal E., Koster M. and Tijs S. (1999). Weighted allocation rules for standard fixed tree games. CentER Discussion Paper 9979, Tilburg University, Tilburg, The Netherlands. · Zbl 1106.91007
[11] Borm P., De Waegenaere A., Rafels C., Suijs J., Tijs S., Timmer J. (2001). Cooperation in capital deposits.OR Spektrum 23, 265–281. · Zbl 0989.90102 · doi:10.1007/PL00013352
[12] Borm P., Fiestras-Janeiro G., Hamers H., Sánchez E. and Voorneveld M. (1999). On the convexity of games corresponding to sequencing situations with due dates. CentER Discussion Paper 1999-49, Tilburg University, Tilburg, The Netherlands. (To appear inEuropean Journal of Operational Research). · Zbl 1049.91007
[13] Branzei R., Iñarra E., Tijs S. and Zarzuelo J. (2001). Cooperation by asymmetric agents in a joint project. Technical Report, Bilbao University, Bilbao, Spain.
[14] Calleja P., Borm P., Hamers H. and Klijn F. (2001a). On a new class of parallel sequencing situations and related games. CentER Discussion Paper 2001-03, Tilburg University, Tilburg, The Netherlands. · Zbl 1007.91006
[15] Calleja P., Borm P. and Hendrickx R. (2001b). Multi-issue allocation games. CentER Discussion Paper 2001-30, Tilburg University, Tilburg, The Netherlands. · Zbl 1057.91003
[16] Claus A. and Kleitman D. (1973). Cost allocation for a spanning tree.Networks 3, 289–304. · Zbl 0338.90031 · doi:10.1002/net.3230030402
[17] Curiel I. (1997).Cooperative game theory and applications. Kluwer Academic Publishers. · Zbl 0956.91501
[18] Curiel I., Derks J. and Tijs S. (1989). On balanced games and flow games with committee control.OR Spektrum 11, 83–88. · Zbl 0678.90102 · doi:10.1007/BF01746002
[19] Curiel I., Hamers H., Potters J. and Tijs S. (1997). Restricted component additive games.Mathematical Methods of Operations Research 45, 213–220. · Zbl 0885.90122 · doi:10.1007/BF01193861
[20] Curiel I., Maschler M. and Tijs S. (1987). Bankruptcy games.Zeitschrift für Operations Research 31, 143–159. · Zbl 0636.90100 · doi:10.1007/BF02109593
[21] Curiel I., Pederzoli G. and Tijs S. (1988). Reward allocations in production systems. In: Eiselt H. and G. Pederzoli G. (eds.),Advances in Optimization and Control. Springer Verlag, 186–199. · Zbl 0654.90104
[22] Curiel I., Pederzoli G. and Tijs S. (1989). Sequencing games.European Journal of Operational Research 40, 344–35. · Zbl 0674.90107 · doi:10.1016/0377-2217(89)90427-X
[23] Curiel I., Potters J., Rajendra Prasad V., Tijs S. and Veltman B. (1994). Cooperation in one machine scheduling.Zeitschrift für Operations Research 38, 113–129. · Zbl 0797.90042
[24] Curiel I., Potters J., Rajendra Prasad V., Tijs S. and Veltman B. (1995). Sequencing and cooperation.Operations Research 42, 566–568. · Zbl 0810.90065 · doi:10.1287/opre.42.3.566
[25] Curiel I. and Tijs S. (1986). Assignment games and permutation games.Methods of Operations Research 54, 323–334. · Zbl 0615.90095
[26] Debreu G. and Scarf H. (1963). A limit theorem on the core of an economy.Econometrica 53, 873–888. · Zbl 0122.37702
[27] Derks J. and Kuipers J. (1997). On the core of routing games.International Journal of Game Theory 26, 193–205. · Zbl 0881.90139 · doi:10.1007/BF01295848
[28] Derks J. and Tijs S. (1985). Stable outcomes for multi-commodity flow games.Methods of Operations Research 50, 493–504. · Zbl 0572.90024
[29] Derks J. and Tijs S. (1986). Totally balanced multi-commodity games and flow games.Methods of Operations Research 54, 335–347. · Zbl 0618.90104
[30] Driessen T. (1988).Cooperative games, solutions and applications. Kluwer Academic Publishers. · Zbl 0686.90043
[31] Dubey P. (1982). The Shapley value as aircraft landing fees revisited.Management Science 28, 869–874. · Zbl 0487.90093 · doi:10.1287/mnsc.28.8.869
[32] Dubey P. and Shapley L. (1984). Totally balanced games arising from controlled programming problems.Mathematical Programming 29, 245–267. · Zbl 0557.90109 · doi:10.1007/BF02591996
[33] Edmonds J. and Johnson E. (1973). Matching, Euler tours and the Chinese postman.Mathematical Programming 5, 88–124. · Zbl 0281.90073 · doi:10.1007/BF01580113
[34] Feltkamp V. (1995). Cooperation in Controlled Network Structures. PhD thesis, Tilburg University, Tilburg, The Netherlands.
[35] Feltkamp V., Nouweland A. van den, Borm P., Tijs S. and Koster A. (1993). Linear production with transport of products, resources and technology.Zeitschrift für Operations Research 38, 153–162. · Zbl 0802.90009
[36] Feltkamp V., Tijs S. and Muto S. (1994). Minimum cost spanning extension problems: the proportional rule and the decentralized rule. CentER Discussion Paper 9496, Tilburg University, Tilburg, The Netherlands.
[37] Fishburn P. and Pollack H. (1983). Fixed route cost allocation.American Mathematical Monthly 90, 366–378. · Zbl 0515.90056 · doi:10.2307/2975572
[38] Ford L. and Fulkerson D. (1962).Flows in networks. Princeton University Press. · Zbl 0106.34802
[39] Fragnelli V., Garcia-Jurado I. and Mendez-Naya L. (2000). On shortest path games.Mathematical Methods of Operations Research 52, 251–264. · Zbl 1103.91313 · doi:10.1007/s001860000061
[40] Fragnelli V., Patrone F., Sideri E. and Tijs S. (1999). Balanced games arising from infinite linear models.Mathematical Methods of Operations Research 50, 385–397. · Zbl 0942.91010 · doi:10.1007/s001860050077
[41] Gale D. (1984). Equilibrium in a discrete exchange economy with money.International Journal of Game Theory 13, 61–64. · Zbl 0531.90011 · doi:10.1007/BF01769865
[42] Gale D. and Shapley L. (1962). College admission and the stability of marriage.American Mathematical Monthly 69, 9–15. · Zbl 0109.24403 · doi:10.2307/2312726
[43] Galil Z. (1980). Applications of efficient mergeable heaps for optimization problems on trees.Acta Informatica 13, 53–58. · Zbl 0431.68062 · doi:10.1007/BF00288535
[44] Gellekom A. van and Potters J. (1999). Consistent rules for standard tree enterprises. Technical Report 9919, Department of Mathematics, University of Nijmegen, Nijmegen, The Netherlands.
[45] Gellekom J. van, Potters J., Reijnierse J., Tijs S. and Engel M. (2000). Characterization of the Owen set of linear production processes.Games and Economic Behavior 32, 139–156. · Zbl 0973.91003 · doi:10.1006/game.1999.0758
[46] Graham R. and Hell P. (1985). On the history of the minimum spanning tree problem.Annals of the History of Computing 7, 43–57. · Zbl 05084045 · doi:10.1109/MAHC.1985.10011
[47] Grahn S. (2001). Core and bargaining set of shortest path games. Discussion Paper 2001:3. Department of Economics, Upssala University, Uppsala, Sweden.
[48] Granot D. (1986). A generalized linear production model: a unifying model.Mathematical Programming 34, 212–222. · Zbl 0604.90142 · doi:10.1007/BF01580585
[49] Granot D. and Granot F. (1992a). On some nerwork flow games.Mathematics of Operations Research 17, 792–841. · Zbl 0773.90097 · doi:10.1287/moor.17.4.792
[50] Granot D. and Granot F. (1992b). On the computational complexity of a cost allocation approach to a fixed cost spanning forest problem.Mathematics of Operations Research 17, 765–780. · Zbl 0783.90128 · doi:10.1287/moor.17.4.765
[51] Granot D., Granot F. and Zhu W. (2000). Naturally submodular digraphs and forbidden digraph configurations.Discrete applied mathematics 100, 67–84. · Zbl 0939.05070 · doi:10.1016/S0166-218X(99)00167-5
[52] Granot D. and Hamers H. (2000). On the equivalence between some local and global Chinese postman and traveling salesman graphs. CentER Discussion Paper 2000-48, Tilburg University, Tilburg, The Netherlands. · Zbl 1032.05079
[53] Granot D., Hamers H. and Tijs S. (1999). On some balanced, totally balanced and submodular delivery games.Mathematical Programming 86, 355–366. · Zbl 1028.91510 · doi:10.1007/s101070050093
[54] Granot D. and Huberman G. (1981). On minimum cost spanning tree games.Mathematical Programming 21, 1–18. · Zbl 0461.90099 · doi:10.1007/BF01584227
[55] Granot D. and Huberman G. (1982). The relationship between convex games and minimal cost spanning tree games: A case for permutationally convex games.SIAM Journal of Algorithms and Discrete Methods 3, 288–292. · Zbl 0498.90094 · doi:10.1137/0603029
[56] Granot D. and Huberman G. (1984). On the core and nucleolus of minimum cost spanning tree games.Mathematical Programming 29, 323–347. · Zbl 0541.90099 · doi:10.1007/BF02592000
[57] Granot D. and Maschler M. (1998). Spanning network games.International Journal of Game Theory 27, 467–500. · Zbl 1058.91518 · doi:10.1007/s001820050085
[58] Granot D., Maschler M., Owen G. and Zhu W. (1996). The kernel/nucleolus of a standard fixed tree game.International Journal of Game Theory 25, 219–244. · Zbl 0846.90136 · doi:10.1007/BF01247104
[59] Hamers H. (1995). Sequencing and delivery situations: a game theoretic approach. PhD thesis, Tilburg University, Tilburg, The Netherlands.
[60] Hamers H. (1997). On the concavity of delivery games.European Journal of Operational Research 99, 445–458. · Zbl 0947.91009 · doi:10.1016/S0377-2217(96)00015-X
[61] Hamers H., Borm P., Leensel R. van de and Tijs S. (1999a). Cost allocation in the Chinese postman problem.European Journal of Operational Research 118, 153–163. · Zbl 0945.90072 · doi:10.1016/S0377-2217(98)00310-5
[62] Hamers H., Borm P., Suijs J. and Tijs S. (1996). The split core for sequencing games.Games and Economic Behavior 15, 165–176. · Zbl 0863.90142 · doi:10.1006/game.1996.0064
[63] Hamers H., Borm P. and Tijs S. (1995). On games corresponding to sequencing situations with ready times.Mathematical Programming 70, 1–13. · Zbl 0844.90120
[64] Hamers H., Klijn F., Solymosi T., Tijs S. and Vermeulen D. (1999b). On the nucleolus of neighbour games. CentER Discussion Paper 99111, Tilburg University, Tilburg, The Netherlands. · Zbl 1011.91024
[65] Hamers H., Klijn F., Solymosi T., Tijs S. and Villar J. (1999c). On the extreme points of the core of neighbour games and assignment games. CentER Discussion Paper 9943, Tilburg University, Tilburg, The Netherlands. (To appear inGames and Economic Behavior).
[66] Hamers H., Klijn F. and Suijs J. (1999d). On the balancedness of multimachine sequencing games.European Journal of Operational Research 119, 678–691. · Zbl 0938.91010 · doi:10.1016/S0377-2217(98)00355-5
[67] Hartman B., Dror M. and Shaked M. (2000). Cores of inventory centralization games.Games and Economic Behavior 31, 26–49. · Zbl 0960.91008 · doi:10.1006/game.1999.0732
[68] Hax A. and Candea D. (1984).Production and inventory management. Prentice-Hall.
[69] Herer Y. and Penn M. (1995). Characterization of naturally submodular graphs: a polynomial solvable class of the TSP.Proceedings of the AMS 123, 613–619. · Zbl 0826.05048
[70] Izquierdo J. and Rafels C. (1996). A generalization of the bankruptcy game: financial cooperative games. Working Paper E96/09, University of Barcelona, Barcelona, Spain.
[71] Kalai E. and Zemel E. (1982a). Generalized network problems yielding totally balanced games.Operations Research 30, 998–1008. · Zbl 0493.90032 · doi:10.1287/opre.30.5.998
[72] Kalai E. and Zemel E. (1982b). Totally balanced games and games of flow.Mathematics of Operations Research 7, 476–478. · Zbl 0498.90030 · doi:10.1287/moor.7.3.476
[73] Kaminski M. (2000). ”Hydraulic” Rationing.Mathematical Social Sciences 40, 131–155. · Zbl 0967.90070 · doi:10.1016/S0165-4896(99)00045-1
[74] Kaneko M. (1982). The central assignment game and the assignment markets.Journal of Mathematical Economics 10, 205–232. · Zbl 0489.90025 · doi:10.1016/0304-4068(82)90038-6
[75] Klijn F., Tijs S. and Hamers H. (2000). Balancedness of permutation games and envy-free allocations in indivisible good economies.Economic Letters 69, 323–326. · Zbl 0956.91016 · doi:10.1016/S0165-1765(00)00308-6
[76] Koster M. (1999). Cost sharing in production situations and network exploitation. PhD thesis, Tilburg University, Tilburg, The Netherlands.
[77] Koster M., Molina E., Sprumont Y. and Tijs S. (1998). Sharing the cost of a network: core and core allocations. CentER Discussion Paper 9821, Tilburg University, Tilburg. · Zbl 1083.91021
[78] Koster M., Reijnierse J. and M. Voorneveld (1999). Voluntary contribution to multiple facilities: a class of ordinal potential games. CentER Discussion Paper 9988, Tilburg University, Tilburg, The Netherlands.
[79] Kruskal J. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem.Proceedings of the American Mathematical Society 7, 48–50. · Zbl 0070.18404 · doi:10.1090/S0002-9939-1956-0078686-7
[80] Kuipers J. (1993). A note on the 5-person traveling salesman game.Zeitschrift für Operations Research 38, 131–140. · Zbl 0792.90100
[81] Kuipers J., Solymosi T. and Aarts H. (2000). Computing the nucleolus of some combinatorially-structured games.Mathematical Programming 88, 541–563. · Zbl 1034.91021 · doi:10.1007/PL00011385
[82] Lawler E., Lenstra J., Rinnooy Kan A. and Shmoys D. (1993). Sequencing and scheduling: algorithms and complexity. In: Graves S., Rinnooy Kan A. and Zipkin P. (eds.),Logistics of production and inventory. North Holland, 445–522.
[83] Lawler E., Lenstra J.K., Rinnooy Kan A. and Shmoys D. (1985).The traveling salesman problem. John Wiley and Sons. · Zbl 0563.90075
[84] Littlechild S. (1974). A simple expression for the nucleolus in a special case.International Journal of Game Theory 3, 21–29. · Zbl 0281.90108 · doi:10.1007/BF01766216
[85] Littlechild S. and Owen G. (1973). A simple expression for the Shapley value in a special case.Management Science 20, 370–372. · Zbl 0307.90095 · doi:10.1287/mnsc.20.3.370
[86] Littlechild S. and Owen G. (1977). A further note on the nucleolus of the airport game.International Journal of Game Theory 5, 91–95. · Zbl 0348.90191 · doi:10.1007/BF01753311
[87] Littlechild S. and Thompson G. (1977). Aircraft landing fees: a game theory approach.The Bell Journal of Economics 8, 186–204. · doi:10.2307/3003493
[88] Llorca N., Tijs S. and Timmer J. (1999). Semi-infinite assignment problems and related games. CentER Discussion Paper 9974, Tilburg University, Tilburg, The Netherlands.
[89] Maschler M. and Potters J. and Reijnierse J. (1995). Monotonicity properties of the nucleolus of standard tree games. Technical Report 9556, Department of Mathematics, University of Nijmegen, Nijmegen, The Netherlands. · Zbl 1211.91083
[90] Meca A., Garcia-Jurado I. and Borm P. (2001). Cooperation and competition in inventory games. CIO Discussion Paper, Universidad Miguel Hernández, Elche, Spain.
[91] Meca A., Timmer J., Garcia-Jurado I. and Borm P. (1999). Inventory Games. CentER Discussion Paper 9953, Tilburg University, Tilburg, The Netherlands.
[92] Megiddo N. (1978). Computational complexity of the game theory approach to cost allocation for a tree.Mathematics of Operations Research 3, 189–196. · Zbl 0397.90111 · doi:10.1287/moor.3.3.189
[93] Mei-Ko Kwan (1962). Graphic programming using odd and even points.Chinese Mathematics 1, 273–277. · Zbl 0143.41904
[94] Moretti S., Norde H., Pham Do K. and Tijs S. (2001). Connection problems in mountains and monotonic cost allocation schemes. CentER Discussion Paper 2001-12, Tilburg University, Tilburg, The Netherlands. · Zbl 1038.91009
[95] Moulin H. and Shenker S. (1992a). Average cost pricing versus social cost sharing: an axiomatic comparison.Journal of Economic Theory 64, 178–201. · Zbl 0811.90008 · doi:10.1006/jeth.1994.1061
[96] Moulin H. and Shenker S. (1992b). Serial cost sharing.Econometrica 60, 1009–1037. · Zbl 0766.90013 · doi:10.2307/2951537
[97] Müller A., Scarsini M. and Shaked M. (2000). The newsvendor game has a non-empty core. Technical report WIOR-594, University of Karlruhe, Karlsruhe, Germany. · Zbl 1018.91005
[98] Nishizaki I. and Sakawa M. (2001). On computational methods for solutions of multiobjective linear production programming games.European Journal of Operational Research 129, 386–413. · Zbl 0980.90081 · doi:10.1016/S0377-2217(99)00280-5
[99] Norde H., Moretti S. and Tijs S. (2001). Minimum cost spanning tree games and population monotonic allocation schemes. CentER Discussion Paper 2001-18, Tilburg University, Tilburg, The Netherlands. · Zbl 1099.90067
[100] Nouweland A. van den, Krabbenborg M. and Potters J. (1992). Flowshops with a dominant machine.European Journal of Operational Research 62, 38–46. · Zbl 0773.90038 · doi:10.1016/0377-2217(92)90175-9
[101] Nouweland A. van den, Maschler M. and Tijs S. (1993). Monotonic games are spanning network games.International Journal of Game Theory 21, 419–427. · Zbl 0795.90094 · doi:10.1007/BF01240156
[102] Nuñez M. and Rafels C. (2000). The extreme core allocations of the assignment games. Technical report, University of Barcelona, Barcelona, Spain.
[103] O’Neill B. (1982). A problem of rights arbitration from the Talmud.Mathematical Social Sciences 2, 345–371. · Zbl 0489.90090 · doi:10.1016/0165-4896(82)90029-4
[104] Owen G. (1975). On the core of linear production games.Mathematical Programming 9, 358–370. · Zbl 0318.90060 · doi:10.1007/BF01681356
[105] Owen G. (1992). The assignment game: the reduced game.Annals of Economics and Statistics 25, 71–79.
[106] Potters J. (1987). Linear optimization games. In: Peters H. and Vrieze O. (eds.),Surveys in games theory and related topics. CWI Tract, 251–276. · Zbl 0631.90097
[107] Potters J., Curiel I. and Tijs S. (1992). Traveling salesman games.Mathematical Programming 53, 199–211. · Zbl 0749.90094 · doi:10.1007/BF01585702
[108] Potters J. and Sudhölter P. (1999). Airport problems and consistent allocation rules.Mathematical Social Sciences 38, 83–102. · Zbl 1111.91310 · doi:10.1016/S0165-4896(99)00004-9
[109] Prim R. (1957). Shortest connection networks and some generalizations.Bell Systems Technical Journal 36, 1389–1401.
[110] Quint T. (1991a). Characterization of cores of assignment games.International Journal of Game Theory 19, 413–420. · Zbl 0728.90102 · doi:10.1007/BF01766430
[111] Quint T. (1991b). The core of anm-sided marching game.Games and Economic Behavior 3, 487–503. · Zbl 0753.90082 · doi:10.1016/0899-8256(91)90017-9
[112] Quint T. (1996). On one-sided versus two-sided matching markets.Games and Economic Behavior 16, 124–134. · Zbl 0870.90046 · doi:10.1006/game.1996.0078
[113] Reijnierse J., Maschler M., Potters J. and Tijs S. (1996). Simple flow games.Games and Economic Behavior 16, 238–260. · Zbl 0871.90124 · doi:10.1006/game.1996.0085
[114] Roth A. and Sotomayor M. (1989).Two sided matching: a study in game theoretic modeling and analyses. Econometric Society Monograph Series, Cambridge University Press.
[115] Samet D. and Zemel E. (1984). On the core and the dual set of linear programming games.Mathematics of Operations Research 9, 309–316. · Zbl 0537.90103 · doi:10.1287/moor.9.2.309
[116] Sánchez-Soriano J., Llorca N., Tijs S. and Timmer J. (2000). On the core of semi-infinite transportation games with divisible goods. CentER Discussion Paper 2000-89, Tilburg University, Tilburg, The Netherlands. (To appear inEuropean Journal of Operations Research).
[117] Sánchez-Soriano J., López M. and Garcia-Jurado I. (2001). On the core of transportation games.Mathematical Social Sciences 41, 215–225. · Zbl 0973.91005 · doi:10.1016/S0165-4896(00)00057-3
[118] Sandsmark M. (1999). Production games under uncertainty.Computational Economics 14, 237–253. · Zbl 0943.91009 · doi:10.1023/A:1008720525884
[119] Sasaki H. (1995). Consistency and monotonicity in assignment problems.International Journal of Game Theory 24, 373–397. · Zbl 0843.90139 · doi:10.1007/BF01243039
[120] Schmeidler D. (1969). The nucleolus of a characteristic function game.SIAM Journal of Applied Mathematics 17, 1163–1170. · Zbl 0191.49502 · doi:10.1137/0117107
[121] Shapley L. (1953). A value forn-person games. In: Kuhn H. and Tucker A. (eds.)Contributions to the theory of games II. Annals of Mathematics Studies, 28. Princeton University Press. · Zbl 0050.14404
[122] Shapley L. and Shubik M. (1967). Ownership and the production function.Journal of Economics 8, 88–111.
[123] Shapley L. and Shubik M. (1971). The assignment game I: the core.International Journal of Game Theory 1, 111–130. · Zbl 0236.90078 · doi:10.1007/BF01753437
[124] Slikker M., Fransoo J. and Wouters M. (2001). Joint ordering in multiple news-vendor problems: a game-theoretical approach. Mimeo, Technische Universteit Eindhoven, Eindhoven, The Netherlands.
[125] Slikker M. and Nouweland A. van den (2001).Social and economic networks in cooperative game theory. Kluwer Academic Publishers. · Zbl 0982.91012
[126] Smith W. (1956). Various optimizers for single-stage production.Naval Research Logistics Quarterly 3, 59–66. · doi:10.1002/nav.3800030106
[127] Solymosi T., Aarts H. and Driessen T. (1998). On computing the nucleolus of a balanced connection game.Mathematics of Operations Research 23, 983–1009. · Zbl 0985.91005 · doi:10.1287/moor.23.4.983
[128] Solymosi T. and Raghavan T. (1994). An algorithm for finding the nucleolus of assignment games.International Journal of Game Theory 23, 119–143. · Zbl 0811.90128 · doi:10.1007/BF01240179
[129] Solymosi T. and Raghavan T. (2000), Stability of the core of assignment games. University of Economic Sciences and Public Administration Budapest, Budapest, Hungary.
[130] Sprumont Y. (1990). Population monotonic allocation schemes for cooperative games with transferable utility.Games and Economic Behavior 2, 378–394. · Zbl 0753.90083 · doi:10.1016/0899-8256(90)90006-G
[131] Sprumont Y. (1998). Ordinal cost sharing.Journal of Economic Theory 81, 126–162. · Zbl 0910.90277 · doi:10.1006/jeth.1998.2408
[132] Suijs J. (2000).Cooperative decision-making under risk. Kluwer Academic Publishers. · Zbl 0973.90038
[133] Suijs J. (2001). Cost allocation in spanning network enterprises with stochastic connection costs. Technical Report, Tilburg University, Tilburg, The Netherlands. · Zbl 1045.91006
[134] Suijs J., Borm P., Hamers H., Koster M. and Quant M. (2001). Communication and cooperation in public network situations. CentER Discussion Paper 2001-44. Tilburg University, Tilburg, The Netherlands. · Zbl 1138.91358
[135] Suijs J., Hamers H. and Tijs S. (1997). On consistency of reward allocation rules in sequencing situations. In: Klein Haneveld W., Vrieze O. and Kallenberg L. (eds.),Ten years LNMB. CWI Tract, 223–232. · Zbl 0885.90125
[136] Tamir, A. (1989). On the core of traveling salesman cost allocation game.Operations Research Letters 8, 31–34. · Zbl 0675.90102 · doi:10.1016/0167-6377(89)90030-8
[137] Tersine R. (1994).Principles of inventory and materials management. Elsevier North Holland.
[138] Tijs S., Meca A. and López M. (2000). Benefit sharing in holding situations. CIO Discussion Paper I-2000-01, Universidad Miguel Hernández, Elche, Spain.
[139] Tijs S., Parthasarathy T., Potters J. and Rajendra Prasad V. (1984). Permutation games: another class of totally balanced games.OR Spektrum 6, 119–123. · Zbl 0537.90101 · doi:10.1007/BF01721088
[140] Tijs S., Timmer J., Llorca N. and Sánchez-Soriano J. (2001). The Owen set and the core of semi-infinite linear production situations. In: Goberna M. and López M. (eds.),Semi-infinite programming: recent advances. Kluwer, 365–386. · Zbl 1055.90082
[141] Timmer J. (2001). Cooperative behaviour, uncertainty and operations research. PhD thesis, Tilburg University, Tilburg, The Netherlands.
[142] Timmer J., Borm P. and Suijs J. (2000a). Linear transformation of products: games and economies.Journal of Optimization Theory and Applications 105, 677–706. · Zbl 0962.91005 · doi:10.1023/A:1004601509292
[143] Timmer J., Llorca N., Tijs S. (2000b). Games arising from infinite production situations.International Game Theory Review 2, 97–106. · Zbl 1073.91524
[144] Velzen B. van and Hamers H. (2001). On the balancedness of one player relaxed sequencing games. Technical Report, Tilburg University, Tilburg, The Netherlands. · Zbl 1041.91008
[145] Voorneveld M. and Grahn S. (2000). Cost allocation in shortest path games. Preprint 1142, Department of Mathematics, Utrecht University, Utrecht, The Netherlands. · Zbl 1071.91007
[146] Young H. (1998). Distributive Justice in Taxation.Journal of Economic Theory 48, 321–335. · Zbl 0637.90027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.