×

Skyrmions and semilocal strings in cosmology. (English) Zbl 1006.83504

Summary: It has been pointed out that cosmic string solutions can exist in gauge field theories with broken symmetry even when \(\pi_1(G/H)\) is trivial. The stability of such semilocal defects is not guaranteed by topology and depends on dynamical considerations. In the literature it has been tacitly assumed that if stable, such strings would form in the early universe in a manner analogous to the formation of a network of more robust topologically-stable strings. In this paper we find that except for unnaturally small values of the correlation length, a network of semilocal strings does not form. Instead, delocalized skyrmionic string configurations, which expand with the Hubble flow, dominate.

MSC:

83F05 Relativistic cosmology
57R99 Differential topology
81R40 Symmetry breaking in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Preskill, J., Vortices and monopoles, ()
[2] Vilenkin, A., Phys. rep., 121, 263, (1984)
[3] ()
[4] Abrikosov, A., Sov. phys. JETP, 5, 1174, (1957)
[5] Nielsen, H.; Olesen, P., Nucl. phys., B61, 45, (1973)
[6] Vachaspati, T.; Achúcarro, A., Phys. rev., D44, 3067, (1991)
[7] Nambu, Y., Nucl. phys., B130, 505, (1978)
[8] Vachaspati, T., Phys. rev. lett., 68, 1977, (1992)
[9] Hindmarsh, M., Phys. rev. lett., 68, 1263, (1992)
[10] Achúcarro, A.; Kuijken, K.; Perivolaropoulos, L.; Vachaspati, T., Nucl. phys., B388, 435, (1992)
[11] James, M.; Perivolapoulos, L.; Vachaspati, T., Nucl. phys., B395, 534, (1993)
[12] James, M.; Perivolaropoulos, L.; Vachaspati, T., Phys. rev., D46, 5232, (1992)
[13] Gibbons, G.; Ortiz, M.; Ruiz, F.; Samols, T., Nucl. phys., B385, 127, (1992)
[14] Leese, R.; Samols, T., Nucl. phys., B396, 639, (1993)
[15] Vachaspati, T.; Watkins, R., Bound states can stabilize electroweak strings, Tupt-92-10, (1992), Tufts preprint
[16] Holman, R.; Hsu, S.; Vachaspati, T.; Watkins, R., Phys. rev., D46, 5352, (1992)
[17] Vachaspati, T.; Barriola, M., Phys. rev. lett., 69, 1867, (1992)
[18] Preskill, J., Semilocal defects, Phys. rev., D46, 4218, (1992)
[19] Hindmarsh, M., Nucl. phys., B392, 461, (1993)
[20] Bogomol’nyi, E.B., Sov. J. nucl. phys., 24, 449, (1976)
[21] Preskill, J.; Vilenkin, A., Phys. rev., D47, 2324, (1993)
[22] Kibble, T.W.B., J. phys., A9, 1387, (1976)
[23] Zel’dovich, Y., Mon. not. astr. soc., 192, 663, (1980)
[24] Vilenkin, A.; Vilenkin, A., Phys. rev. lett., Erratum, 46, 1496, (1981)
[25] Vachaspati, T.; Vilenkin, A., Phys. rev., D30, 2036, (1984)
[26] Kibble, T.W.B., Nucl. phys., B252, 227, (1985)
[27] Shellard, E.P.S., Nucl. phys., B283, 624, (1987)
[28] Matzner, R., Comput. phys., 2, 51, (1988)
[29] Moriarty, K.; Meyers, E.; Rebbi, C., Interactions of cosmic strings, ()
[30] Laguna, P.; Matzner, R., Phys. rev. lett., 62, 1948, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.