×

zbMATH — the first resource for mathematics

Superembeddings, partial supersymmetry breaking and superbranes. (English) Zbl 1006.83056
Summary: It is advocated that the superembedding approach is a generic covariant method for the description of superbranes as models of (partial) spontaneous supersymmetry breaking. As an illustration we construct (in the framework of superembeddings) an \(n=1\), \(d=3\) worldvolume superfield action for a supermembrane propagating in \(N=1\), \(D=4,5,7\) and 11-dimensional supergravity backgrounds. We then show how in the case of an \(N=1\), \(D=4\) target superspace gauge fixing local worldvolume superdiffeomorphisms in the covariant supermembrane action results in an effective \(N=2\), \(d=3\) supersymmetric field theory with \(N=2\) supersymmetry being spontaneously broken down to \(N=1\). The broken part of \(N=2\), \(d=3\) supersymmetry is nonlinearly realized when acting on Goldstone \(N=1\), \(d=3\) superfields, which describe physical degrees of freedom of the model. As an introduction to the formalism, the procedure of getting effective field theories with partially broken supersymmetry by gauge fixing covariant superbrane actions is also demonstrated with a simpler example of a massive \(N=2\), \(D=2\) superparticle.

MSC:
83E30 String and superstring theories in gravitational theory
81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Hughes, J.; Liu, J.; Polchinski, J., Phys. lett. B, Vol. 180, 370, (1986)
[2] Hughes, J.; Polchinski, J., Nucl. phys. B, Vol. 278, 147, (1986)
[3] Achucarro, A.; Gauntlett, J.; Itoh, K.; Townsend, P.K., Nucl. phys. B, Vol. 314, 129, (1989)
[4] Gauntlett, J.P.; Itoh, K.; Townsend, P.K., Phys. lett. B, Vol. 238, 65, (1990)
[5] Volkov, D.V.; Akulov, V.P., JETP lett., Vol. 16, 438, (1972)
[6] Volkov, D.V.; Akulov, V.P., Phys. lett. B, Vol. 46, 109, (1973)
[7] Bagger, J.; Galperin, A., Phys. rev. D, Vol. 55, 1091, (1997)
[8] Bagger, J.; Galperin, A., Phys. lett. B, Vol. 412, 296, (1997)
[9] Belucci, S.; Ivanov, E.; Krivonos, S., Fortsch. phys., Vol. 48, 19, (2000)
[10] Belucci, S.; Ivanov, E.; Krivonos, S., Phys. lett. B, Vol. 460, 348, (1999)
[11] Gonzalez-Rey, F.; Park, I.Y.; Roc̃ek, M., Nucl. phys. B, Vol. 544, 243, (1999)
[12] Roc̃ek, M.; Tseytlin, A., Phys. rev. D, Vol. 59, 106001, (1999)
[13] Ivanov, E.; Krivonos, S., Phys. lett. B, Vol. 453, 237, (1999)
[14] Ketov, S.V., Mod. phys. lett. A, Vol. 14, 501, (1999)
[15] Ketov, S.V., Nucl. phys. B, Vol. 553, 250, (1999)
[16] Ketov, S.V., \(N=2\) super-born – infeld theory revisited · Zbl 0958.83036
[17] Delduc, F.; Ivanov, E.; Krivonos, S., Nucl. phys. B, Vol. 576, 196, (2000)
[18] Bellucci, S.; Ivanov, E.; Krivonos, S., Phys. lett. B, Vol. 482, 233, (2000)
[19] West, P., Automorphisms, non-linear realizations and branes · Zbl 0959.81024
[20] Coleman, S.; Wess, J.; Zumino, B., Phys. rev., Vol. 177, 2239, (1969)
[21] Callan, S.; Coleman, S.; Wess, J.; Zumino, B., Phys. rev., Vol. 177, 2247, (1969)
[22] Volkov, D.V., Sov. J. part. nucl., Vol. 4, 3, (1973)
[23] Kuzenko, S.; Theisen, S., Jhep, Vol. 0003, 034, (2000)
[24] Cecotti, S.; Ferrara, F., Phys. lett. B, Vol. 187, 335, (1987)
[25] Metsaev, R.R.; Tseytlin, A.A., Nucl. phys. B, Vol. 533, 109, (1998)
[26] Pesando, I., Jhep, Vol. 9811, 002, (1998)
[27] Pesando, I., Mod. phys. lett. A, Vol. 14, 343, (1999)
[28] Pesando, I., Jhep, Vol. 9902, 007, (1999)
[29] Kallosh, R.; Rahmfeld, J., Phys. lett. B, Vol. 443, 143, (1998)
[30] Kallosh, R.; Tseytlin, A.A., Jhep, Vol. 9810, 016, (1998)
[31] Oda, I., Phys. lett. B, Vol. 444, 127, (1998)
[32] Oda, I., Jhep, Vol. 9810, 015, (1998)
[33] Metsaev, R.R.; Tseytlin, A.A., Phys. lett. B, Vol. 436, 281, (1998)
[34] Pasti, P.; Sorokin, D.; Tonin, M., Phys. lett. B, Vol. 447, 251, (1999)
[35] Pasti, P.; Sorokin, D.; Tonin, M., Branes in super-AdS backgrounds and superconformal theories · Zbl 1117.83382
[36] Zhou, J.-G., Nucl. phys. B, Vol. 559, 92, (1999)
[37] Kreuzer, M.; Zhou, J.-G., Phys. lett. B, Vol. 472, 309, (2000)
[38] Dawson, P., D1 and D5-brane actions in \(AdSm×S\^{}\{n\}\) · Zbl 0961.81060
[39] Maldacena, J., Adv. theor. math. phys., Vol. 2, 231, (1998)
[40] Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M., Phys. lett. B, Vol. 428, 105, (1998)
[41] Witten, E., Adv. theor. math. phys., Vol. 2, 253, (1998)
[42] Sorokin, D., Superbranes and superembeddings, Phys. rep., Vol. 329, 1, (2000) · Zbl 1006.83056
[43] Bandos, I.; Pasti, P.; Sorokin, D.; Tonin, M.; Volkov, D., Nucl. phys. B, Vol. 446, 79, (1995)
[44] Bandos, I.; Pasti, P.; Sorokin, D.; Tonin, M., (), 79
[45] Howe, P.S.; Sezgin, E., Phys. lett. B, Vol. 390, 133, (1997)
[46] Howe, P.S.; Sezgin, E., Phys. lett. B, Vol. 394, 62, (1997)
[47] Howe, P.S.; Sezgin, E.; West, P.C., Phys. lett. B, Vol. 399, 49, (1997)
[48] Sorokin, D.P.; Tkach, V.I.; Volkov, D.V., Mod. phys. lett. A, Vol. 4, 901, (1989)
[49] Galperin, A.; Sokatchev, E., Phys. rev. D, Vol. 48, 4810, (1993)
[50] Sorokin, D.; Tkach, V.; Volkov, D.V.; Zheltukhin, A., Phys. lett. B, Vol. 216, 302, (1989)
[51] Ivanov, E.; Kapustnikov, A., Phys. lett. B, Vol. 267, 175, (1991)
[52] Ivanov, E.; Kapustnikov, A., Int. J. mod. phys. A, Vol. 7, 2153, (1992)
[53] Gauntlett, J.P., Phys. lett. B, Vol. 272, 25, (1991)
[54] Galperin, A.; Sokatchev, E., Phys. rev. D, Vol. 46, 714, (1992)
[55] Pashnev, A.; Sorokin, D., Class. quantum grav., Vol. 10, 625, (1993)
[56] Berkovits, N., Phys. lett. B, Vol. 232, 184, (1989)
[57] Tonin, M., Phys. lett. B, Vol. 266, 312, (1991)
[58] Tonin, M., Int. J. mod. phys. A, Vol. 7, 6013, (1992)
[59] Sorokin, D.; Tonin, M., Phys. lett. B, Vol. 326, 84, (1994)
[60] Howe, P.S., Phys. lett. B, Vol. 332, 61, (1994)
[61] Delduc, F.; Galperin, A.; Howe, P.; Sokatchev, E., Phys. rev. D, Vol. 47, 587, (1992)
[62] Delduc, F.; Sokatchev, E., Class. quantum grav., Vol. 9, 361, (1992)
[63] Delduc, F.; Ivanov, E.; Sokatchev, E., Nucl. phys. B, Vol. 384, 334, (1992)
[64] Bandos, I.; Sorokin, D.; Volokov, D., Phys. lett. B, Vol. 352, 269, (1995)
[65] Howe, P.S.; Raetzel, O.; Sezgin, E., Jhep, Vol. 9808, 011, (1998)
[66] Ivanov, E.A.; Ogievetsky, V.I., Teor. mat. fiz., Vol. 25, 164, (1975)
[67] Volkov, D.V.; Zheltukhin, A., Sov. phys. JETP lett., Vol. 48, 61, (1988)
[68] Duff, M.J.; Khuri, R.R.; Lu, J.X., Phys. rep., Vol. 259, 213, (1995)
[69] Bergshoeff, E.; Sezgin, E.; Townsend, P.K., Phys. lett. B, Vol. 189, 75, (1987)
[70] Bergshoeff, E.; Sezgin, E.; Townsend, P.K., Ann. phys., Vol. 185, 330, (1988)
[71] Pasti, P.; Tonin, M., Nucl. phys. B, Vol. 418, 337, (1994)
[72] Aurilia, A.; Nicolai, H.; Townsend, P.K., Nucl. phys. B, Vol. 176, 509, (1980)
[73] Duff, M.J.; van Nieuwenhuisen, P., Phys. lett. B, Vol. 94, 179, (1980)
[74] Hawking, S.W., Phys. lett. B, Vol. 134, 403, (1984)
[75] de Alwis, S.P., Brane world scenarios and the cosmological constant · Zbl 0972.83072
[76] Bousso, R.; Polchinski, J., Jhep, Vol. 0006, 006, (2000)
[77] Brown, M.; Gates, M.J., Ann. phys. (N.Y.), Vol. 122, 443, (1979)
[78] Zupnik, B.M.; Pak, D.G., Theor. math. phys., Vol. 77, 1070, (1988)
[79] Bergshoeff, E.; Sezgin, E.; Townsend, P.K., Phys. lett. B, Vol. 209, 451, (1988)
[80] Howe, P.S.; Tucker, R.W., J. phys. A, Vol. 10, L155, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.