zbMATH — the first resource for mathematics

Comparison of two unknown pure quantum states. (English) Zbl 1006.81004
Summary: Can we establish whether or not two quantum systems have been prepared in the same state? We investigate the possibility of universal unambiguous state comparison. We show that it is impossible to conclusively identify two pure unknown states as being identical, and construct the optimal measurement for conclusively identifying them as being different. We then derive optimal strategies for state comparison when the state of each system is one of two known states.

81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI
[1] Nielsen, M.A.; Chuang, I.L., Quantum computation and information, (2000), Cambridge Univ. Press Cambridge · Zbl 1049.81015
[2] Winter, A., J. phys. A: math. gen., 34, 7095, (2001)
[3] Helstrom, C.W., Quantum detection and estimation theory, (1976), Academic Press New York · Zbl 0115.13102
[4] Ivanovic, I.D., Phys. lett. A, 123, 257, (1987)
[5] Dieks, D., Phys. lett. A, 126, 303, (1988)
[6] Peres, A., Phys. lett. A, 128, 19, (1988)
[7] Chefles, A., Contemp. phys., 41, 401, (2000)
[8] Huttner, B.; Muller, A.; Gautier, J.D.; Zbinden, H.; Gisin, N.; Clarke, R.B.M.; Chefles, A.; Barnett, S.M.; Riis, E., Phys. rev. A, Phys. rev. A, 63, 040305, (2001)
[9] Barnett, S.M.; Riis, E., J. mod. opt., 44, 1061, (1997)
[10] Weihs, G.; Reck, M.; Weinfurter, H.; Zeilinger, A., Phys. rev. lett., 54, 893, (1996)
[11] Lütkenhaus, N.; Calsamiglia, J.; Suominen, K.-A.; Calsamiglia, J.; Lütkenhaus, N., Phys. rev. A, Appl. phys. B, 72, 67, (2001)
[12] Kwiat, P.G.; Weinfurter, H., Phys. rev. A, 58, 2623, (1998)
[13] Leibfried, D.; Meekhof, D.M.; Monroe, C.; King, B.E.; Itano, W.M.; Wineland, D.J., J. mod. opt., 44, 2485, (1997), and references therein
[14] (), and references therein
[15] Buhrman, H.; Cleve, R.; Watrous, J.; de Wolf, R., Phys. rev. lett., 87, 167902, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.