×

zbMATH — the first resource for mathematics

Synchronization of the neural response to noisy periodic synaptic input. (English) Zbl 1004.92006
Summary: The timing information contained in the response of a neuron to noisy periodic synaptic input is analyzed for the leaky integrate-and-fire neural model. We address the question of the relationship between the timing of the synaptic inputs and the output spikes. This requires an analysis of the interspike interval distribution of the output spikes, which is obtained in the gaussian approximation. The conditional output spike density in response to noisy periodic input is evaluated as a function of the initial phase of the inputs. This enables the phase transition matrix to be calculated, which relates the phase at which the output spike is generated to the initial phase of the inputs.
The interspike interval histogram and the period histogram for the neural response to ongoing periodic input are then evaluated by using the leading eigenvector of this phase transition matrix. The synchronization index of the output spikes is found to increase sharply as the inputs become synchronized. This enhancement of synchronization is most pronounced for large numbers of inputs and lower frequencies of modulation and also for rates of input near the critical input rate. However, the mutual information between the input phase of the stimulus and the timing of output spikes is found to decrease at low input rates as the number of inputs increases. The results show close agreement with those obtained from numerical simulations for large numbers of inputs.

MSC:
92C20 Neural biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1126/science.275.5297.221
[2] DOI: 10.1121/1.1913585
[3] DOI: 10.1088/0305-4470/14/11/006
[4] DOI: 10.1038/367270a0
[5] DOI: 10.1016/S0020-0255(98)10010-5 · Zbl 1001.92513
[6] DOI: 10.1103/PhysRevE.53.3958
[7] DOI: 10.1016/S0022-5193(05)80396-0
[8] DOI: 10.1016/S0925-2312(00)00180-6 · Zbl 02180654
[9] DOI: 10.1162/089976699300016485
[10] DOI: 10.1162/089976600300015141
[11] DOI: 10.1007/BF00160806 · Zbl 05474275
[12] DOI: 10.1098/rstb.1992.0075
[13] DOI: 10.1007/BF01053974 · Zbl 1002.92516
[14] DOI: 10.1103/PhysRevE.55.1798
[15] DOI: 10.1016/0378-5955(90)90112-3
[16] DOI: 10.1162/neco.1997.9.3.503
[17] DOI: 10.1038/990101
[18] DOI: 10.1038/365337a0
[19] DOI: 10.1007/BF00202899
[20] DOI: 10.1016/0375-9601(83)90086-5
[21] DOI: 10.1103/RevModPhys.70.223
[22] DOI: 10.1038/383076a0
[23] DOI: 10.1016/S0006-3495(60)86872-5
[24] DOI: 10.1016/S0006-3495(64)86768-0
[25] DOI: 10.1007/BF00275153 · Zbl 0397.92006
[26] Goldberg J. M., J. Neurophysiol. 32 pp 613– (1969)
[27] DOI: 10.1038/338334a0
[28] DOI: 10.1073/pnas.86.5.1698
[29] DOI: 10.1103/PhysRevE.63.031902
[30] DOI: 10.1038/376033a0
[31] DOI: 10.1007/s004220050390 · Zbl 0887.92009
[32] DOI: 10.1101/lm.3.2-3.279
[33] DOI: 10.1121/1.384982
[34] Joris P. X., J. Neurophysiol. 71 pp 1022– (1994)
[35] DOI: 10.1137/0141042
[36] DOI: 10.1162/089976698300016945
[37] DOI: 10.1162/neco.1997.9.5.1015
[38] Köppl C., J. Neurosci. 17 pp 3312– (1997)
[39] DOI: 10.1103/PhysRevE.55.2040
[40] Lapicque L., J. Physiol. (Paris) 9 pp 620– (1907)
[41] DOI: 10.1002/cne.902230203
[42] DOI: 10.1007/BF01053970 · Zbl 1002.92503
[43] DOI: 10.1111/j.1749-6632.1993.tb24679.x
[44] DOI: 10.1162/neco.1994.6.6.1111 · Zbl 0810.92006
[45] DOI: 10.1162/089976600300015286
[46] DOI: 10.1007/BF00201473 · Zbl 0850.92012
[47] DOI: 10.1016/S0925-2312(99)00076-4 · Zbl 0956.92007
[48] DOI: 10.1103/PhysRevE.59.7008
[49] DOI: 10.1016/S0375-9601(96)00878-X
[50] DOI: 10.1007/BF02476873 · Zbl 0197.16604
[51] Rose J. E., J. Neurophysiol. 30 pp 769– (1967)
[52] Rothman J. S., Aud. Neurosci. 2 pp 47– (1996)
[53] Rothman J. S., J. Neurophysiol. 70 pp 2562– (1993)
[54] DOI: 10.1103/PhysRevE.59.3427
[55] DOI: 10.1146/annurev.ph.55.030193.002025
[56] DOI: 10.1016/S0006-3495(72)86087-9
[57] DOI: 10.1088/0954-898X/7/4/005 · Zbl 0884.92004
[58] DOI: 10.1088/0954-898X/11/1/301 · Zbl 0955.92012
[59] DOI: 10.1073/pnas.94.2.719
[60] DOI: 10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q
[61] DOI: 10.1162/neco.1993.5.4.570
[62] DOI: 10.1007/BF00337113
[63] DOI: 10.1023/A:1008841325921 · Zbl 0896.92010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.